STABLE REGULARITY LEMMAS AND THEIR MODEL-THEORETIC
FOUNDATIONS

ZE FAN

ABSTRACT. This paper studies the stable regularity lemma from both combinatorial and
model-theoretic perspectives. It first presents a combinatorial proof of the stable regularity
lemma for finite stable graphs (following Malliaris and Shelah [13]), utilizing the notion
of e-excellence to construct an e-regular partition without irregular pairs. The necessary
model-theoretic background on stability theory, including Keisler measures and rank, is then
developed as a foundation for a more general approach. Building on these tools, the paper
provides a model-theoretic proof of a generalized stable regularity lemma (after Malliaris
and Pillay [12]) that extends the combinatorial result to arbitrary Keisler measures.

1. INTRODUCTION

In 1978, Szemerédi proposed his celebrated regularity lemma in [17].
Theorem 1.1. (Szemerédi’s Regularity Lemma) For any positive number €, there exists some
number N = N(e) and M = M (€) such that for any finite graph G = (V, R) with |V| > N,
there exists a partition V=V, U---U Vg for some k < M satisfying the following property:
(1) the partition is equitable, that is, the cardinalities of any two parts V; and V; differs
by at most 1.
(2) all but at most ek? of the pairs (Vi,V;) are e-reqular. That is, for any A C V; and
B C Vj such that |A| > €|V;| and |B| > €|V}|, we have
(BN (Vix Vi) RN (AXB)
Vil - Vil A - B

This theorem poses a profound influence on fields including extremal combinatorics and
theoretical computer science. The reader is referred to [10] for a wonderful survey of its
various applications.

It is observed that the statement of Theorem 1.1 allows at most ek? pairs of (V;, V) to
not be e-regular. Alon, Duke, Leffman, Rédl, and Yuster in [2] showed that such allowance
is necessary. For a certain type of bipartite graph named half-graph, which has vertex sets
Vo= {v}r,, W = {w;}}_; and edge set R = {(v;,w;) : i < j}, non-e-regular pairs must
exist. This observation leads to the following definition.

Definition 1.2. For fized k € N, a graph G 1is said to be k-edge stable if there do not exist
distinct vertices ay, ..., a, by, ..., b, in G such that R(a;, b;) is true if and only if i < j.

Notice that the k-edge stability property does not exclude just a single bipartite graph
in G. Actually, it avoids a family of graphs being induced subgraphs of G, as there is no

regulation on the connection state within a;’s and b;’s.
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Following this definition, a natural question to ask is whether forbidding half-graphs from
appearing in G = (V, R) by stability regulations can yield an improved version of the regu-
larity lemma that eliminates all non-e-regular pairs. Malliaris and Shelah give an affirmative
answer to this question by proposing the Stable Regularity Lemma in [13]. Their result not
only strengthened the notion of e-regularity by pushing the edge density between e-regular
pairs to either less than e or greater than 1 — ¢, but also provided a sharper bound on the
size of the partition.

Theorem 1.3. (Stable Regularity Lemma, [13]). For a given € > 0 and k € N, there exists
a number N = N (e, k) such that for any finite k-edge stable graph G with sufficiently large
vertex set, G can be partitioned into Ay, ..., A; for some | < N, satisfying the following
properties:

(1) the partition is equitable.

(2) all pairs of parts (A;, A;) are e-reqular, and their density d(A;, A;) is either greater
than 1 — € or less than e.

(3) the upper bound N of the partition number is bounded above by N < (4/6)2k+3_7.

This result inspired further developments in the model-theoretic study of regularity. Malliaris
and Pillay in [12] obtained another version of the stable regularity lemma, which extends the
notion of edge density in terms of finite counting measure to arbitrary Keisler measures, but
without any bounds on partition size, as well as ignoring the partition equitability.

Earlier work by Lovédsz and Szegedy [11] established a version of the regularity lemma
for NIP graphs with bounded VC-dimension using purely combinatorial techniques. This
result predates the stable regularity lemmas discussed above, and applies to a broader class
of graphs, as NIP is a weaker condition than stability. Subsequent developments combining
combinatorial and model-theoretic methods have led to further refinements. For instance,
Tao in his seminal paper [18] also provided a regularity lemma on algebraic hypergraphs of
bounded description complexity in large finite fields, which was generalized by Chernikov
and Starchenko in [5] to distal hypergraphs. Observing that stability and distality represent
two opposite extreme cases of NIP (hyper)graphs, the two authors also proposed a regularity
lemma for stable hypergraphs in their more recent paper [4].

This paper’s main focus is on the two stable regularity lemmas by Malliaris and Shelah in
[13] and by Malliaris and Pillay in [12]. In section 2, we provide an almost pure combinatorial
proof for the first one. In section 3, we give a brief introduction to the necessary model-
theoretic tools to understand the proof of the second stable regularity lemma. In section 4,
we show the proof of this lemma, and also show that it is indeed a generalization of the first
one.

2. STABLE REGULARITY LEMMA FOR FINITE GRAPHS

In this section, we review the proof of the Stable Regularity Lemma. All graphs mentioned
in this section are finite. The variables € and ( represent arbitrary positive numbers less than
1/2.
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We prove this theorem by showing that a k-edge stable graph G can always be partitioned
into parts that all have a property called e-excellence. This construction, by the defini-
tion presented below, guarantees that between any two parts either nearly all vertices are
connected or nearly all vertices are not connected.

Definition 2.1. Let G be a graph, and let € > 0 be a fized number. An induced subgraph
A C G is called e-good if for any b € G, either |{a € A : R(a,b)}| < €|A| or [{a € A :
—R(a,b)}| < €A

Intuitively, if A C G is e-good, then vertices in A have a “nearly uniform opinion” on
whether or not to connect to a given vertex b € G. The number of outliers that disobey the
opinion must be less than €| A|. Therefore, if for any formula ¢ we write ¢° = =¢ and ¢* = ¢,
for any b € G we can define a truth value t(b, A) € {0,1} such that R(a,b)t®? holds for
more than (1 — €)|A] vertices a € A.

Definition 2.2. Let G be a graph, and € > 0 be a fized number. An induced subgraph A C G
is called e-excellent if for any e-good subgraph B C G, either |[{a € A : t(a, B) = 0}| < €|A|
or [{a € A:t(a,B) =1} < €|A|.

An e-excellent subgraph A C G guarantees that, every e-good subgraph B C G has a
common uniform opinion on nearly all vertices in A. It should also be noted that e-excellence
implies e-goodness. That is because under the global assumption of 0 < € < 1/2, the singleton
{b} for any b € G is trivially e-good.

In general, a large graph G does not have a large e-excellent subset. An easy counterex-
ample is the random graph where each edge has probability 1/2. Almost surely it has no
nontrivial e-good sets. However, if G is k-edge stable, then the existence of a large e-excellent
set A C (G is guaranteed, where the cardinality of A is bounded below by an expression related
to the tree bound of k, which will be defined below. Since the concepts of full special tree
and tree bound come from a model-theoretic context, we adopt the following model-theoretic
notation.

Notation 2.3. We use "2 to denote the set of all sequences with length n, in which all the
terms are either 0 or 1. We define <"2 by <"2 = Uiz_ol 2. We use p,n to represent sequences.
We write n|i to be the subsequence of n consisting of its first i terms. We write n”p for the
sequence formed by attaching p to the end of n. We write p < n if p =nli for some i € N.

Now, we can define the full special tree.

Definition 2.4. For n € N, a full special tree of height n in a graph G is a configuration
consisting of two families of vertices in G, the nodes (b, : p € <"2) and the leaves (a, : 1 € "2),
such that for any n € "2 and p € <"2, p~(x) < n if and only if R(b,,a,)” for x € {0,1}.

A lemma in model theory implies that in a given graph G, the edge stability index and
the maximum height of full special tree are bounded above by each other. We prove this
lemma by modifying a proof in [7]. In the original proof, the definition of stability is slightly
different from our definition.

Lemma 2.5. (see Lemma 6.7.9, p. 313, [7]). If a graph G is k-edge stable, then G does not
have any full special tree of height 2872 — 2. If G contains no full special tree of height n,
then G is 2" -edge stable.
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Proof. We first prove the second assertion by constructing a contradiction. Assume G is not
2"t 1edge stable. Then there exists vertices ay, ..., agn+1 and by, ..., byn+1 such that R(a;, b))
if and only if 7 > 7. We can immediately construct a full special tree of height n with all the
a;’s as leaves and all the b;’s as nodes by the following relabeling process. For a sequence
p € 2, let p be the natural number represented by p if we see p as a binary number. For
example, (1,1,0) =22 +2 = 6. For n € "2, let a,, = ag;41. For p €2, 0 <i < n, let b, = b,,
where

. ZnE"Q, n|i:p(2ﬁ + 1)
- on—k ’

In this case, the a,’s and b,’s form a full special tree of height n, leading to a contradiction.

For the first assertion, we aim to prove its contrapositive. That is, if G has a full special
tree with height 2¥*! + 2, then it is not k-stable. To prove this, we need to set up some
more definitions. Let 7" be a full special tree with height k& + 1. For i € {0,1}, we use T;
to denote the k-tree whose nodes and leaves are the nodes b, and leaves a, of T" such that
p(0) = n(0) = i. We say that a function f :<¥ 2 —<! 2 is a tree map if it preserves the
end-extension property of sequences. If T is a [-tree and N is a set of nodes of H, we say N
contains a k-tree if there exists a tree map f :<% 2 —<! 2 such that for all p €<% 2, b, is in
the set N. This immediately implies that there is a k-tree S whose nodes are elements of N,
and whose leaves are the corresponding leaves of T'. In this case we say N contains a k-tree

S.

We claim that the following statement is true. For k,l € N and for a full special tree T
with height n + k, if the nodes of T" are partitioned into two sets N and P, then either N
contains a k-tree or P contains an [-tree.

We prove this claim by induction on n 4+ k. The base case of n = k = 0 is immediate.
Assume n + k > 0, and let the vertices b, where p e<(+k) 2 be the nodes of 7. Without
loss of generality, we also assume by € N. For ¢ € {0,1}, use Z; to denote the set of nodes of
T;. By induction hypothesis, for ¢ = 0 or 1, either N N Z; contains a (k — 1)-tree or P N Z;
contains an [-tree. If at least one of PN Zy; and PN Z; contains an [-tree, then so does P. If
not, then both N N Z, and N N Z; contains a (k — 1)-tree. Since by € N, we can construct a
k-tree in N by adjoining the two (k — 1)-trees by by. The claim is thus proved.

Back to the proof of the lemma, assume that G has a full special tree with height 28! —2.
We will prove by induction on k£ — r that for any 1 < r < n, the following property P, holds:

there exists vertices a},...,a, . and b},...,b,_ of G, and a (2" — 2)-tree T

in GG, such that

(1) for all 1 <4, j <k —r, R(a;,b}) if and only if i < j,

(2) if b is a node of T, then there exists a ¢ with 1 < ¢ < n — r such that
R(a},b) if and only if i < q.

(3) if a is a leaf of T', then the same ¢ satisfies R(a,b’) if and only if j > g.

The base case Sy states that there exists a (281 — 2)-tree in G, which is exactly our assump-
tion. In the final case S;, T' is a tree with height 2. Hence, it has a node b and a leaf a such
that R(a,b). Put a between a; and a;,,, b between b, and b/, we form a half-graph-like
induced subgraph in G with 2k vertices. That means G is not k-edge stable.
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Therefore, it remains to show the inductive step: if for » > 1 the property P, holds, then
so does P._;. By the statement of P,, there exists a full special tree T with height 27! — 2.
For each leaf a of T, write T'(a) be the set of nodes in T' that have an edge with a. We can
divide the situation into two cases.

First, assume that there exists a leaf a of T such that T'(a) contains a (2" — 1)-tree. Then
there is a node b € T'(b) and a (2" — 2)-tree 7" in T'(a) such that if we relabel all the a} and
v by adding 1 to their index for 4,j > ¢, and setting a;; = a and b, = b, then the new
sequence of a; and b; together with 7" and a new ¢’ = ¢ + 1 satisfies the statement of P,_;.

Second, assume that for all leaves a of T, T'(a) contains no (2" — 1)-trees. Then let a be
any branch of Ty and N be the set of all nodes of Tj. The assumption implies that N N7T'(a)
contains no (2" — 1)-tree. Thus by applying the claim to Tp, the set N\T(a) contains a
(2" — 2)-tree T". Relabel all the a; and b by adding 1 to their index for i, j > ¢, and setting
agy; = a and b, = by, the new sequence of a; and b together with 7" and ¢ satisfies the
statement of P,._;.

In either case P,_; holds. The induction is thus completed, which concludes the whole
proof of the lemma. O

For a k-edge stable graph G, we can now define the tree bound t = t(k) to be the smallest
natural number such that G has no full special tree of height ¢t. By Lemma 2.5, (k) is
well-defined and has an upper bound (k) < 2¥+2 — 2,

We can now prove the existence of a large e-excellent set in k-edge stable graphs.

Proposition 2.6. Let G be a k-edge stable graph, and t = t(k) be its tree bound. Fiz some
value € < 1/2'. Then, for every A C G with |A| > 1/€', there exists an e-excellent set A" C A
with |A’| > €71 A|.

Proof. Towards contradiction, assume there exists a sufficiently large A C G such that for all
A" C A with |A'] > €71 A, A’ is not e-excellent. In this case, we can define families of sets
(A, :n € <tD2) and (B, : n € <'2) by the following inductive process.

(1) For the base case, let Ay = A. Since A is not e-excellent, there exists some e-good set
B that witnesses the non-excellence of Ay. Take By = B.

(2) For 0 <m <t and for n € ™7'2, define A,y = {a € A, : t(a, B,) = i} for i € {0,1}.
Notice that both A, - and A,- ) have cardinality at least €|4,|, since B, witnesses
the non-excellence of A,. Thus, |4,~u| > €[4, > €™|A| > €!|A|, implying that
A,y is not e-excellent as well. Therefore, we can pick B, to be an e-good set that
witnesses the non-excellence of A, - .

(3) For n € '2, we can define A, by the same process as in part (2). We do not define B,
in this case, since it is not guaranteed that the sets A, remain non-e-excellence.

We now show that such a construction leads to a contradiction in the tree bound, as we
can build a full special tree with height ¢ from it. To form the leaves, for each n € 2, let a,,
be any element of A,. The set A, is not empty, because it has cardinality of at least €’|A|,
which is no less than 1 by the lower bound of |A|. To choose the nodes, for each m < t,
p € ™2 and 7 € '2 with p < 7, define the set U, = {b € B, : R(a,,b)' @B} We know
|Uy| < €|B,| because B, is e-good. Therefore, if we further define U, = (J{U, : p < n}, then
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we can control the cardinality of U, by |U,| < 2%€|B,| < |B,|, with the last inequality coming
from the fact that e < 1/2". Thus, we can pick b, to be any element of B,\U,. The vertices
a, and b, together form a t-tree, a contradiction. O

Base on Proposition 2.6, we may try to prove the stable regularity lemma as follows. First,
pick an e-excellent set Ay in G. If the remainder G\ Ay is large enough, run the proposition
once again to obtain another e-excellent subset A; C G\ Ay. Repeating this process finitely
many times we can get pairwise disjoint e-excellent sets Ay, ..., A,, and we end this process
when the remaining elements are few enough to distribute them evenly into the excellent sets
without causing much trouble to their excellency. However, Proposition 2.6 has little control
on the size of the excellent sets it generates, while in Theorem 1.3 we require a equitable
partition. This issue can be solved by a slight modification of previous results.

Definition 2.7. Let sg, ..., s;—1 be a sequence of natural numbers. We call it a size sequence
for € when es; > spp1 forl =0,2,...,t — 2, s;_1 divides all other elements of the sequence,
and S;_1 > t.

Proposition 2.8. Let G be a k-edge stable graph, and t = t(k) be its tree bound. Fiz some
e < 1/2'.Let sg,...,s:_1 be a size sequence for €. Then, for any induced subgraph A C G
with |A| > max{sg, 1/€'}, there exists an e-excellent subset A C A with |A’| = s; for some
l=0,1,...,t—1.

Proof. We use a strategy similar to the proof of Proposition 2.6. The proof will be complete
if we can guarantee that during the inductive process of constructing the sets A,’s and B,’s,
for n € ™2, the set A, always have size s,,. To handle this, in the initial stage we take Ay to
be any subset of A with cardinality so. Then, for 0 < m < t and for n €™ ! 2, by inductive
hypothesis we can assume that |A,| = s,,_1. Thus Ay~ iy will have sizes at least €sp,—1 > s
for i € {0,1}. If the inequality is strict, then discard some arbitrary elements in A, to
make sure it has size s,,.

By Proposition 2.8, we can construct from a large graph G a sequence of e-excellent subsets
whose sizes are from the terms of a fixed sequence. The next step is to refine this collection
of excellent sets to make sure they form an equitable partition. To achieve this, several facts
from probability theory are needed. The argument here is adopted from Section 4 of the

paper [1].

Fact 2.9. ([16]). Consider a finite set of NV elements, K of which possess a certain property.
Define a random variable H (s, N, K) as the number of elements with this property among a
sample of s elements drawn without replacement from the set. Then for any positive number
2
H(s,N,K
Prob (M

> K +t < —2t25
- € .
S - N -

Proposition 2.10. Consider a finite set S with cardinality N. Let My, ..., M, be subsets
of S, where p = CN' for some fized constants C and l. Let r be some divisor of N. Then,
for any positive integer t satisfying rlogr +logC' < 2t?N — rllog N, there exists a uniform
partition (that is, a partition in which all parts have equal size) of S into r parts, such that
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for each piece X we have
|M; N X]| < | M|
Xl = N

+t,
for all 0 <7 <p.

Proof. Fact 2.9 implies that

Prob (\/ (H<N/]G/]:’ M) > %” +t>) < CN'e~

1<p

If P={Fy, P,...,P,_1}is a random uniform partition of S, then for any 0 < 7 <r—1 and
0 < i < p, the probability that P; contains at least h elements in M; is Prob(H (N/r, N, M;) >
h). Thus we have

[P O M| [ M| -
Prob(\/ \/( P, Z N +t <rCN'e

i<r—1:<p

But if rlogr +log C' < 2t2N — rllog N holds, one will further have

prn /(005 B )Y

1<r—1:<p

That means there must be some uniform partition P satisfying the requirements of the
proposition. O

We also need the following Proposition to proceed.

Proposition 2.11. Let k be a positive number, and G be a k-edge stable graph. Then, for
any subset AC G, {{a € A: R(a,b)}:be G} <) ('Al) < O(JAJ%).

This proposition immediately follows from the well-know Sauer-Shelah Lemma in model
theory, if we observe that the k-edge stability implies the graph has VC dimension at most
k—1.

Theorem 2.12. (Sauer-Shelah, see Theorem 11.4.10, p. 72, [15]). Let (V,F) be a set system
having V.C' dimension k. Then, mx(n) < ZZ 0 ( ) for all positive integers n.

Proof. We prove the theorem by induction on n + k. The base cases of n = 0 and £ = 0
are trivial. For the inductive step, assume n > 0 and £ > 0. Let S C V be a arbitrary
subset with cardinality n, and arbitrarily pick some s € S. Now, for every F' € F, define
Fs = FnNS. Also define F' = {Fs € lIz(S) : s ¢ Fs,FsU{s} € lIz(S)}. It is observed
that [ILz(S)| = |F'| + |H£(S\{s})| = [lL=(S5)| + [I1x(S\{s})|. Since F" have VC dimension
at most £ — 1, by induction hypothesis we may conclude that

T7(5)] < dz:of (7;) +2§ (n;l) :é(D

The proof is thus completed. O
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Now, we are ready to state the proposition concerning the construction of an equitable
partition of e-excellent sets. This proposition is crucial for the proof of the stable regularity
lemma.

Proposition 2.13. Let G be a finite graph with k-edge stable property. Fixz some positive
number ¢ > € > 0. Let A be an e-excellent subset of G with cardinality n. If some divisor r
of n satisfies

rlogr +log2 < 2(¢ — €)*n — rklogn,

then there exists a uniform partition of A into r pieces by Ay, A1, ..., A._1, such that each
of the pieces are (-excellent.

Proof. In the context of Proposition 2.10, we define sets My, M, ..., M, to be in the form of
{a € A: R%(a,b)}, for some ¢ € {0,1} and b € G. By Proposition 2.11, we know p < 2n*.
Therefore, in Proposition 2.10 taking ¢ = 2, t = ( — ¢, and [ = k, we obtain a uniform
partition of A into r pieces by Ag, Ay,..., A1, such that forall0 <:<pand0<j <r—1,

| M0 Aj| _ | M|
< + (¢ — o).
|45
That shows all the A;’s are (-good. By the fact that for any vertex b € G we always have
t(b, A) = t(b, A;), A;’s are also (-excellent. O

It is also necessary to formalize the idea that pairs of excellent sets agree uniformly on
whether or not edges exist between them. This ensures that excellent sets can serve as
partitions in the stable regularity lemma.

Proposition 2.14. Let G be a graph and € be some positive number. If subsets A,B C G
are both e-excellent, then the following statements are true.

(1) The pair (A, B) is e-uniform. That is, there ezists a truth value t = t(A, B) € {0,1}
such that at least (1 — €)|A| elements a € A and at least (1 — €)|B| elements b € B
satisfy R(a,b)*.

(2) For ¢ = (2€)'/2, the pair (A, B) is C-regular with edge density d(A, B) > 1 —( or
d(A, B) < (.

Proof. Part (1) is immediate from the definition of excellence. To prove Part (2), for a € A
we define W, = {b € B : R(a,b)'*} and U = {a € A : |W,| > ¢|B|}. Tt is observed that
|U| < €|A|, and for every a € A\U, we have |W,| < €|B|. Define Z = {(a,b) € Ax B :
R(a,b)'*}. Since W C (U x B)U Uagwr{(a,b) : b € Wo}, we have the estimation

(W <UL 1Bl + [A] - max |Wa| < €lA]-[B] +€|A] - [B].

Therefore, if t = 0, the edge density is bounded by

_ |7
d(A,B) = Al 1B <2 <.

The last inequality holds because of the global assumption of € < 1/2. Similarly, if t = 1
then we have d(A, B) > 1 —(.
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To prove (-regularity, we arbitrarily pick A’ C A and B’ C B such that |A’'| > (|A| and
|B'| = (|B|. Define Z" = Z N (A" x B'). Since Z' C (U x B") UU,canpi(a; ) : b € We}, we

can estimate

17 <|U| - 1B + 4] max Wl < e[A] - |B| + | 4 - |B| < C|A] | B
acA'\U

Thus, if t = 0, we have

iz,
AT 151
indicating that the difference of density |d(A, B) — d(A’, B')| < ¢. If t = 1, the same result
can be achieved by an identical approach. Hence, the pair (A, B) indeed has (-regularity. [

d(A', B') =

Now, we are prepared to prove the stable regularity lemma. We first state and prove one
of its slightly stronger forms with excellence property.

Theorem 2.15. For given € > 0 and k € N, there exists a number N = N (e, k) such that for
any finite k-edge stable graph G with sufficiently large vertex set, G can be partitioned into
Ay, ..., A for somel < N, satisfying the following property:

1) the partition is equitable,

2) for each i <1, A; is e-excellent,

3) all pairs of parts (A;, A;) fori,j <1 are e-uniform, as defined in Proposition 2.14,
4) let t = t(k) < 2842 — 2 be the tree bound, then for e < 1/2' we have N < 4(8/e)!2.

(
(
(
(

Proof. Let G be a graph with n vertices, and let t = (k) be the tree bound of k. Without loss
of generality, we assume that € < 1/2") and € can be represented as a fraction with numerator
1. Define a = €/4 and 8 = €/3. Also pick ¢ = [1/a] € N, which implies 1/a < ¢ < 2/a. Let
¢ be the maximal natural number such that

. an  ,., an
lee — — .
iee (G -a

We assume that n is sufficiently large such that it satisfies the following three lower bounds.

(1) a'n/2" — 1 > t.
(2> atn/Zt —-1> M(B’ a, qtila k})/Oé
(3) a'n/2" —1>1/p5.
In this case, we can define a sequence by s; = ¢* "'~ for i = 0,1,...,t — 1. Observe that
s;—1 = ¢ > t. That is guaranteed by the first lower bound of n by
an t—1 t
S —q¢ an a'n
CZ qt—l _2qt_1_127_1>t
Therefore, by applying Proposition 2.8 inductively, we can obtain a family of disjoint a-
excellent sets {B; : 1 < j < j,} such that each of B; have sizes s; for some [ =0,1,...,t—1.
Also notice that the set B defined by B = G\ U;;l B; has size strictly less than s.

Next, by the second lower bound of n, we know that the cardinality of every B; is large
enough for applying Part (3) of Proposition 2.13. Thus we can further divide all the B;’s,
to obtain a finer partition {B; : 1 <i <4,} U{B}, in which all the B]’s are S-excellent and
have size c.
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We now try to distribute elements in B to the sets B;’s evenly, so that after the distribution
every pair of the parts are e-uniform. To achieve this, arbitrarily partition B into {C; : 1 <

i <.}, where
B B
1y .

for all 1 < i < iy, allowing some of the C;’s being empty. We claim that for all 7, we have
|C;| < 2p|Bi|. If the claim is true, then

BB +|Ci| _ BlBI| +26|B]
Bl+icl = 1B

implying the e-uniformity. To prove the claim, observe that 7, is bounded by

:Bﬁzej

—(sn—1 _
My itz nos

c c c
as |B| < sg — 1. Thus for all 1 <i <i,,

|Ci|—]_<80—1<80—1
Bl T . n—s
|z| * 0

</67

where the last inequality comes from the fact that so = ¢"~'¢ < an/2. By the third lower
bound of n, we have 1/¢ < . Thus

ICi] |Gl =1 1

N / + -
|Bi| |Bz| ¢
Therefore, if we define A; = C; U B for all 1 <1 <, then {A4; : 1 <i <.} is the equitable
partition required by the theorem.

1
<B4+ -<25.
C

Finally, it is left to formulate a bound for i,. By the choice of ¢, we have

an an
4qt*1 < ﬁ —1l<e
Therefore we have -
4gt—1 42\ ] 1—2
PO G _, (_)
c ! a €
The proof is this completed. O

Theorem 1.3 is an immediate consequence of this theorem.

Proof of Theorem 1.5. Apply Theorem 2.15 with k and €2/2. The regularity can be obtain
by Proposition 2.14. 0

3. MODEL-THEORETIC PRELIMINARIES

The second main goal of this paper is to provide a proof of a stable regularity lemma using
purely model-theoretic methods. In preparation, this section presents several foundational
and standard results from model theory. Due to length considerations, proofs for most
theorems and propositions are omitted; however, references to the sources containing these
proofs will be explicitly indicated for the reader’s convenience. We assume the reader is
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familiar with basic concepts in model theory, including languages, theories, models, formulas,
sentences, and types.

In this paper, L will always be a first order language, and T" will be a complete L-theory
with only infinite models. A classical fact in model theory guarantees the existence of a
sufficiently large model M of T with certain desired properties.

Fact 3.1. (Theorem 8.5, [3]) Let s be a regular cardinal greater than the cardinality of the
set of L-formulas. Then there exists a model M of T" which is k-saturated and strongly
k-homogeneous.

Recall that k-strong homogeneity simply means that for arbitrary subsets A, B C M with
cardinality less than x (we refer those sets as “small sets” later this text), any bijective
elementary map f : A — B can be extended to an automorphism of M. Thus, if we pick a
sufficiently large regular cardinal kg that is larger than the cardinality of any specific models
we consider later, and let C be a model satisfying Fact 3.1, then any model of 7" with
cardinality at most kg is isomorphic to an elementary substructure of C.

Let A be a small subset of C, and let L denote the language obtained by adjoining L
with constant symbols for all elements of A. Then for a L4-sentence ¢, we write = ¢ to
denote C = ¢. Equivalently, we know M |= ¢ for some model M containing A.

For small model M (with cardinality less than C), we also follow Shelah’s theory of imag-
inaries to construct extensions M, L4, C®4, and T°Y. For the details of construction, please
refer to Chapter 1 of Pillay, [14]. For set A C M*®, we also use acl®(A4) and dcl®(A) to
denote the algebraic closure and definable closure of A over M4,

Next, we propose the definition of stability for arbitrary L-formulas. It can be observed
that with slight modification on indexes, this definition can be seen as a generalization of the
edge stability of graphs by setting L to be the language consisting only of the binary edge
relation.

Definition 3.2. An L-formula ¢(x,y) is stable when there exists some n < w such that there
does not exists a;,b; for i <n such that = ¢(a;, b;) if and only if i < j.

Remark 3.3. In this definition, x and y can be variables or tuples of variable. Also, the
formula ¢(x,y) may contains additional parameters.

If a formula ¢(z,y) is stable, then its complete types (maximal consistent sets p(z) con-
sisting of formulas of the form ¢(x,a) and —¢(z,a)) have good behaviors, and the set of all
its complete types Sy(C) carries a well-behaved structure. To describe these phenomena in
detail, we first propose the concept of definability for complete types.

Definition 3.4. Let M be a small model in C, and 6(x,y) an L-formula without any pa-
rameters. For a complete 0-type p(x) over M, we say p is d-definable if there exists an
Lys-formula ¥(y) such that for allb € M, 6(x,b) € p(x) if and only if = ¥ (b). We call such
Y a d-definition of p.

The following important proposition guarantees the existence of ¢-definitions given ¢ is
stable.
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Proposition 3.5. (Lemma 2.2, [14]) Let §(x,y) be a stable L-formula, let M be a small
model, and p(x) € Ss(M) a complete -type. Then, p has a §-definition ¥ (y), which is a
positive Boolean combination of formulas in the form of §(a,y), a € M.

Next, fix a variable x, for any finite collection of formulas A = A(z), we can describe the
structure of Sa(C) by equipping a topology on it. For every A-formula ¢(z), if we define a
set [¢] = {p € SA(C) : ¢(z) € p(x)} and let all such [¢] to form a basis of a topology, then
they induce a compact, Hausdorff, and totally disconnected topology on Sa(C). Recall that
for any compact Hausdorff space X, we can define the Cantor-Bendixon rank by an inductive
process. First, the rank C'B(p) is no less than 0 for any point p € X. And CB(p) = « if and
only if p is an isolated point in the subspace {q € X : CB(q) > a}. Furthermore, if for some
compact Hausdorff subspace Y of X, o = sup{CB(p) : p € Y} is finite, then the supremum
is attained and the set Y, = {p € Y : CB(p) = «} is finite. We also define the cardinality of
Y, to be the CB-multiplicity of Y, write as C' B, (Y) = |Ya|. The following result provides
yet another demonstration of the theoretical strength of stable formulas:

Lemma 3.6. (Lemma 3.1, [14]) If A = A(x) consists only of stable formulas, then CB(p)
is finite for any p € Sa(C).

By this lemma, we can conclude that for any compact Hausdorff subspace Y of SA(C), the
supremum of the Cantor-Bendixon rank on Y is also finite. This leads us to the following
important definition, which is very useful in a general model theory context, as well as in the
proof of the stable regularity lemma in the following section.

Definition 3.7. Let A = A(x) be a finite set of stable formulas, and ®(z) be a set of
formulas with the same variable x, over a small subset of C. We define the A-rank of
®(x), denoted RA(P(x)) to be the Cantor-Bendizon rank of the subspace Y = {p € SA(C) :
p(x) is consistent with ®(x)}. We also define the A-multiplicity of ®(x) by mulia(P) =
CBpun(Y).

It can be shown that Y is always compact ad Hausdorff, thus the A-rank must always be
finite. Therefore, by applying induction on the A-rank where A = {6(x,y)}, one can prove
the next proposition.

Proposition 3.8. (Lemma 1.3.7, [8]) Let A be a small set in C, 6(z,y) be a stable formula,
and p(x) € Ss(A). Then, there exists some global complete d-type q(x) € Ss(C) such that
p(x) Uq(z) is consistent, and q is d-definable over acl®(A).

By Proposition 1.3.11 in [8], Proposition 3.8 is equivalent to saying that there exists a non-
forking global extension ¢ for p. Forking is another important theme in general model theory,
which has multiple equivalent definitions. We shall propose one as follows. Recall that for
some small set A in C, a sequence (a; : i < o) C C is A-indiscernible if for any positive
integer n, and formula ¢(z1,...,x,) with parameters in A, and any increasing sequences
i1 < o0 <y, J1 < < jn, we have = ¢(a;,,. .., aq;,) if and only if = ¢(ay,, ..., a;,).

Definition 3.9. A formula ¢(x,a) divides over a small set A when there ezists an A-
indiscernible sequence (a; : 1 < w) with ag = a and a; =p a such that {p(x,a;) 1 i < w} is
inconsistent. We say that a formula forks over A if it implies a finite disjunction of formulas,
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each of which divides A. Furthermore, we say a type forks over A if it implies a formula that

forks over A.

Remark 3.10. By Corollary 1.3.13 of [8], if ¢(z,y) and ¥(z,b) are both stable formulas,
and there exists some a,b such that both ¢(x,a) and ¥(x,b) divide over some set A, then
their disjunction ¢(z,a) V P(z,b) still divides over A. Given this fact, it is observed that in
a stable theory (a theory in which all formulas are stable) a formula forks over A if and only
if it divides over A.

Proof. Dividing implying forking is trivial, thus it suffices to show that ¢(z,a) forks over A
implies that it divides over A. Suppose the forking of ¢ is achieved by ¢;(z,a;) for some
i =1,2,...,n. Since their disjunction \/" ¢;(z,a;) still divides A and ¢(z,a) implies this
disjunction, we can conclude that ¢(x,a) divides over A. O

With reference to Proposition 3.8, when A is a model of a stable theory, the conclusion
can be sharpened: the non-forking extension is uniquely determined.

Theorem 3.11. (Lemma 1.4.7, [8]) Let M be a small model with stable theory, and let §(x,y)
be some formula over M. Then any complete d-type p = p(x) has a unique non-forking global
extension ¢ = q(z) € Ss(C).

In the stable regularity lemma discussed in the previous section, the notion of e-regularity
was defined using an edge-counting argument. This combinatorial framework can be rigor-
ously reformulated in measure-theoretic terms using a trivial counting measure. Leveraging
model-theoretic techniques allows us to extend this combinatorial formulation naturally to
finitely additive probability measures, specifically Keisler measures. Fundamental concepts
and results concerning Keisler measures were first introduced in Keisler’s famous paper [9].
In what follows, we present key definitions and essential tools from this theory that are
necessary for our discussion.

We still work under a monster model C, and let M be a small model inside C. A fragment
F in M is a small set of formulas over M, which contain all formulas from L, and is closed
under connectives, quantifiers, and variable substitutions. We use o(F') to represent the
o-algebra of M, generated by all subsets that are definable in F'. With a slight abuse of
notation, we say a measure « is over F' if it is defined on o(F).

Definition 3.12. Given a small model M, a Keisler measure o on M is a finitely additive
probability measure over some fragment F(a)) in M. We also say a Keisler measure is global
when it is over C.

Now, let A be a finite set of stable formulas. Recall from Definition 3.7 that for any A-type
¢, its A-rank is defined by Ra(¢) = sup{Ra(p) : p € [¢|}. Notice that since A is stable,
all the complete types have finite A-rank, so the supremum in the definition is always finite
and attained. Based on this notation, we can state the following proposition, whose proof is
simple enough to be presented here.

Proposition 3.13. (Lemma 1.7, [9]) Let M be a small model, and o a Keisler measure on
M over the fragment F = F(«). Let A C F be a finite set of stable formulas, and let ¢
be a (stable) A-type. Then, when p runs through all the complete A-types over F' such that

alpnp) >0, we have a(|J(¢ Np)) = a(p).
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Proof. We prove this proposition by induction on the A-rank of ¢. The base case Ra(¢) =0
is immediate: rank 0 means every point in [¢] is isolated. In a compact space, that is
equivalent to [¢] is finite. Write [¢] = {p1,...,pn}, we observe that |J_ (¢ N p;) is a finite
partition for ¢ (here we regard the types as the sets they define). By the finite additivity of
a, we get the desired equality.

For the inductive step, let Ra(¢) = n > 1. Use F,_; to represent the set of all A-types
over I with rank at most n — 1, then we observe that ¢ can be written as the union of
¢ N F,_1 and finitely many sets in the form ¢ N p, where p € [¢] with Ra(p) = n. Applying
induction hypothesis on ¢g = ¢ A F,,_1, we get

o) = a(U(qbo N q)) = a(U<¢mq>>,

q q

where ¢ runs through all complete A-types over F' with rank at most n — 1. Adjoin this with
finitely many ¢ N p’s, the result gets proved. O

The concept of forking and non-forking can also be extended to Keisler measures. We
propose the related definitions as follows.

Definition 3.14. Let F' C G be two fragments, and ¢ a type over F'. We say ¢ forks over
F af it forks over the set of parameters of F.

We also define the forking part of G over F to be the union of all complete types over
G that forks over F, written as fk(G,F). If a and 5 are two Keisler measures such that
F(a) € F(8) and Blr = o, then we write fi(5, a) = HF(B), F(a)).

Let o, 8 be Keisler measures on M such that B is an extension of a. We say that (3 is a
non-forking extension of ac when B(fk(5,«)) = 0.

Analogously to Proposition 3.8, the existence of a non-forking extension for Keisler mea-
sures is guaranteed.

Proposition 3.15. (Theorem 1.18, [9]) Let M be a small model in C, and let a a Keisler
measure on M over F(a). Then for any fragment G O («), a has a non-forking extension
to G.

The last concept to be introduced in this section is that of a countable base of a given type
®.

Definition 3.16. Let p be a complete type in some small model M and over some fragment
F. A fragment G C F is called a countable base for p if G is countable, and p|g has the same
A-rank and A-multiplicity as p for any finite collection of stable formulas A C G.

We also say G is a countable base for a Keisler measure o on M if G is countable,
G C F(a), and

a({c € M : G is a countable base for tp(c/F(a))}> = 1.

Theorem 3.17. (Proposition 1.20, [9]) Let M be an arbitrary small model. Every Keisler
measure o on M has a countable base.

This theorem gives the following corollary, which will be useful in the next section.
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Corollary 3.18. Let A be a finite set of stable formulas, and o be a global Keisler measure.
Then there exists some small model M such that a|n (the restriction of o on A-definable
sets) does not fork over M. That is, if a A-formula ¢(x) has positive a-measure, then it does
not fork over M.

Proof. Choose any small model M, and let § = a|y;. Then by Theorem 3.17, 5 admits a
countable base G C F(8) = F(M). Therefore, for any finite collection of stable formulas
A C G, we know that the set X = {¢ € M : G is a countable base for p. := tp(c¢/M)} has
f-measure 1. Now, let ¢ = ¢(x,a) € A be any formula with B(gb(m, a)) > (. Since X has full
measure, the intersection of X and ¢(x,a) has positive measure. That means there exists
some ¢ € M such that ¢ = ¢(x,a) and G is a countable base for the type p. := tp(c¢/M). By
the definition of countable base, we know Ra(p.) = Ra(pela)-

We will now show that, Ra(p.) = Ra(pc|¢) implies that ¢(x,a) does not fork over M
by showing its contrapositive. Assume ¢(z,a) forks over M, then by Remark 3.10 ¢(z,a)
divides over M. That means there exists a; € M for i < w such that ag = a, a; =)/ a and
{p(x,a;) : i < w} is inconsistent. Now, take Y = {p € SA(C) : p.J¢ C p}, and for any
i < wdefineY; ={peY: oz, a) € p}. Observe that each Y; is both open and closed
in Y, and the intersection of all Y;’s is empty. Therefore, there exists some ¢ such that the
Cantor-Bendixon rank of Y; is strictly less than the rank of Y. That implies

Ra(pe) < Ra(pela U{d(z,a:)}) < Ra(pela),

a contradiction. The corollary is thus proved. 0

4. A MODEL-THEORETIC GENERALIZATION

Now we are ready to state and discuss the model-theoretic version of the stable regularity
lemma. Let M be a saturated small model inside C, and let (V, W, R) be a definable bipartite
graph. We call a finite Boolean combination of terms in the form R(z,b) a A-formula, and
finite Boolean combination of terms in the form R(a,y) a A*-formula, where x and y are
variables while a, b are parameters.

Theorem 4.1. (Theorem 1.1, [12]) Let (V, W, R) be a bipartite definable graph, where the
edge relation is stable. Let p and v be Keisler measures on'V and W, respectively. Then, for
any € > 0 one can partition V into finitely many A-definable subsets Vi, ..., V,,, and W into
finitely many A* definable subsets Wy, ..., W, such that for each pair (V;, W;), exactly one
of the following statement holds.

(a) There exists a set Vi with u measure less than eu(V;) such that for all a € V;\V/,
there exists some set Wit C Wj with (W) < ev(W;) such that R(a,b) for all b €
Wi\W§. Dually, there exists a set W} with v measure less than ev(W;) such that for
all b € W;\WJ, there exists some set VP C V; with (V) < eu(V;) such that R(a,b)
for all a € V;\V}.

(b) There exists a set V! with pu measure less than eu(V;) such that for all a € V;\V/,
there exists some set Wit C W with v(W}) < ev(W;) such that ~R(a,b) for all
b € W\W}. Dually, there exists a set W, with v measure less than ev(W;) such
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that for all b € W;\WJ, there exists some set V;" C V; with u(Vy") < eu(V;) such that
=R(a,b) for all a € V,\V.

We first notice that by an argument identical to Proposition 2.14, Theorem 4.1 directly
implies v/2e-regularity between all pairs (Vi, W;).

To prove this theorem, we first state and prove the following important lemma. In the
following discussion, by Corollary 3.18 we can always choose a small model M such that the
restriction of global Keisler measures p|a and v|a+« do not fork over M.

Lemma 4.2. Let € > 0 be arbitrary. then in the definable bipartite graph (V,W, R), we can
partition V into definable sets Vi, ..., V,, such that for each 1 < i < m there exists a complete
A-type p; over M with u(p;) >0, V; € p;, and w(Vi\p;) < en(Vi) (Here we sometimes regard
definable sets as the formulas that defines them).

Proof. We prove this lemma by induction on the rank Ra(V). The base case of Ra(V) =0
is immediate as that means (similar to argument in Proposition 3.13) V is consistent with
only finitely many complete A-types p1,...pg, all of which are of rank 0. Hence, there are
A-formulas ¢y, ..., d; such that ¢; isolates p;. By taking V; = {a € V : M |= §;(a)}, we
observe that p(V;\p;) = 0 < eu(V;), satisfies our requirement.

Next, assume the rank RA(V) = n > 0. In this case, V is consistent with finitely many
complete A-types pi, ..., pg such that Ra(p;) = n for all 1 <i < k. Writing u(p;) = a4, we
then divide the problem into three cases.

First, assume that all the a;’s are strictly positive. Since we have u(p;) = inf{u(¢) :
¢ € p;}, we can pick some ¢; € p; such that p(¢;) < a1/(1 —¢€). Setting U; = V N ¢; and
Vi= UZ\(Uz;l1 U;), we construct disjoint definable sets V1, . .., Vj such that p(Vi\p;) < eu(V;).
Now, let U = Ule Vi. We know that V\U has rank less than n. Apply the induction
hypothesis on V\U and this case is proved.

Second, assume that some but not all of the a;’s are zero. Without loss of generality, we
may assume that a; > 0 for 1 <7 <[, and o; =0 for [ + 1 < ¢ < k. Similar to the first case,
for 1 <14 <1 we can find V; € p; such that p(V;\p;) < eu(V;). Since all the a;’s for j > 1 +1
are equal to zero, there exists some A-formula 6 € Uf:l 41 pj such that

(0) < EN(Vl)l__MEVI\pl).

Taking V' = 6 (as the definable set),then we know V' contains U;?:l +1p; and is disjoint from

Ui:l Vi. Define V{ = V' U Vi, then we have u(V{\p1) < ep(Vy). Similar to the first case, we
can now take U = V/ UV, U--- UV, and apply induction hypothesis on V\U. This case is
also proved.

Third, assume that all of the «;’s are zero. By proposition 3.13, there must exist some
complete A-type p such that p(p) > 0. So Ra(p) = m < n. Let X be a formula in p of rank
m, then we know u(X) > p(p) > 0. Thus by the induction hypothesis, we can partition X
into X1,..., X, together with complete A-types ¢i, ..., q, with positive measure and ¢; C X;,
such that pu(X;\¢;) < eu(X;) for all 1 < i < r. Similar to the second case, we can find V'
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disjoint from X, containing Ule p; and satisfying
ew(Wh) — p(Wilg)
V') <
u(V') T

Defining Wy = W3 U V', we observe that p(W{\q1) < eu(W7). Finally take U = W] U W, U
-+« U W, apply induction hypothesis on V\U and the whole proof is completed. O]

Similar to V', we can use this lemma to partition W into Wy,..., W, and find complete
A*-types qi, - . ., qn such that W; € ¢; and v(W;\q;) < ev(W;). Now, we are finally ready to
prove Theorem 4.1.

Proof of Theorem 4.1. We apply Lemma 4.2 twice to obtain partitions V..., V,,, Wy, ..., W,
for V' and W respectively with corresponding complete types pi,...,pm and q,...,q,. We
now fix some 1 < ¢ < m and 1 < j < n. By Proposition 3.5, p; is definable with R-
definition being some A*-formula ¢(y). That means for all b € W (M), = 1(b) if and only if
R(z,b) € p;(x). Thus if p, is the unique non-forking global extension of p;, then ¥(y) is the
R(z,y)-definition of p;. We divide the problem into two cases.

First, assume that ¢(y) € ¢;. By this assumption we know that for all b € W; except
a set of v-measure less than ev(W;) we have = 1 (b). Assume that = 1(b), then we know
R(x,b) € pi, so =R(x,b) divides (forks) over M. By Corollary 3.18, u({a € M : =R(a,b)}) =
p(piU{=R(z,b)}) = 0. That proves the second clause in Part (a) of the statement of Theorem
4.1. The second clause of Part (a) can be proved dually by consider y(z), the A*-definition
of g;.

Second, assume that ¢ (y) ¢ g;, then —¢)(y) € ¢;. Using an identical argument as the first
case, one can show that (V;, W;) satisfies Part (b) of the statement of the theorem. The
whole proof is thus completed. 0

Next, we will show that it is indeed true that Theorem 4.1 implies Theorem 1.3, but
without the bound on the number of partitions and the equitable partition condition. This
direction was briefly noted in Remark 1.3 of [12], and we now provide a more detailed version
of the argument. To begin, we take a finite stable graph (V, R). We first turn it into a
bipartite graph (Vg, Vr, R), by taking Vg and V; as duplicates of V', and R(ag,br) if and
only if R(a,b) for ag € Vg, by € V.

Now, we take a non-principal ultrafilter & of N, and consider the constant sequence
(Vi Vi, Ru)nen, where (Vg,, Vin, Ry) = (Vg, Vi, R) for all n € N. We then take the
ultraproduct (V*, W*, R*) = [], .,;,(Van, Vin, Ry). This is an infinite bipartite definable
graph in a saturated model M with a stable binary edge relation. We can also define Keisler
measures f, v on V* W* respectively by pushing forward the counting measures. Concretely,

we define | = o)l
T NS VL,n . VL,n (]5
M(¢) - il_r)rzl/{ |VL7n| )

and similarly for v. For a broader account of ultraproducts and ultrafilters in model theory, we
refer the reader to Chapter 2 of [19]. Now, we can apply Theorem 4.1 on (V*, W*, R*). Notice
that because the edges are symmetric, in the construction of partitions of V* = J;*, V;* and
W = U?:l W} in Lemma 4.2 we can be sure that n =m and V;* = W for 1 <i <m.
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The third step is to pull the partition back. Notice that each V;* is defined by some formula
¢i(x,b;), where b; is some tuple in W*. By Lo$’s theorem (see Theorem 9.5.1, [7]), each b; is
represented by a sequence (b; ,,)nen and for U-almost all n € N the formula ¢;(z, b;,,) yields
a partition Vz,, = ", Vi i, where

VL,n,i == {CL S VL,n : VL,n ): ¢i(a7 bi,n)}7

and V7, ,; carries over the v/2e-regularity. Take one of these n and write A; = Vi ,,;. This
gives us a desired partition on the original finite graph (V, R).

It should be remarked that, if we combine the combinatorial and model-theoretic approach,
we can obtain a result better than both Theorem 1.3 and Theorem 4.1. Chernikov and
Starchenko in [4] give the following result by basically using the combinatorial approach, and
defining e-goodness and e-excellence with respect to arbitrary Keisler measures.

Theorem 4.3. Theorem 4.13, [4] Let (V,R) be a d-stable k-uniform hypergraph, and let
e € (0,1/2%) be arbitrary. Then there exists an R-definable partition of V* with e-reqularity
of densities either greater than 1 — € or less than €. Also, the size of the partition is bounded
by a polynomial of degree d + 1 in 1/e.
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