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Abstract In 2010, N. Lichiardopol conjectured for ¢ > 3 and k£ > 1 that any
tournament with minimum out-degree at least (¢ — 1)k — 1 contains k disjoint
cycles of length ¢, which has been established for tournaments. In this paper,
we demonstrate that the conjecture holds for ordinary multipartite tournaments
when ¢ = 3, and for round-robin tournaments when ¢ > 3. Moreover, we point
out several flaws found in the proof for tournaments when g = 4.
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1 Introduction

This paper mainly presents a study of digraphs, and we refer the readers to the
book [2] for standard definitions related to digraphs. For a digraph D = (V, A),
if there is an arc from x to y, we write x — y, and call y an out-neighbor of x,
x an in-neighbor of y. For a vertex x of D, we let dj{)(x) denote the out-degree
of x, which is the number of out-neighbors of . Similarly, we let d,(z) denote
the in-degree of x, let §* (D) denote the minimum out-degree of V. For U C V,
we let dj;(x) denote the number of out-neighbors of z in U, similarly d; ()
denote the number of in-neighbors of x in U. For two vertex sets A and B, we
let d* (A, B) denote the number of arcs from A to B. We say there exists a k-
matching from A to B if there exist k arcs from A to B which have no common
endpoints. A tournament is a digraph such that for each pair of vertices x and
y, there exists exactly one arc between x and y. There are many interesting
results about tournaments, we refer interested readers to Chapter 2 of [2]. A
digraph D = (V, A) is called a multipartite tournament if V can be partitioned
into sets V1, Va, ..., Vi, such that for any ¢ < j and any vy € V;,v2 € Vj, there
exists exactly one arc between v; and vy, and for any v, v € V;, there exists no
arc between v, and va. Moreover, if for any ¢ < j, the arcs from V; to V; have
a common orientation, then the multipartite tournament is called an ordinary
multipartite tournament. Some properties of ordinary multipartite tournaments
are presented by the work of Bang-Jensen et al [3]. An ordinary multipartite
tournament is also called a uniform multipartite tournament [11]. Note that a
tournament is always an ordinary multipartite tournament, if we partition its
vertex set into sets each of which contains exactly one vertex.

In this work, we also consider the problem of multi-digraph. The concept
of a multi-digraph is a generalization of the concept of a digraph. In a multi-
digraph there might be multi-arcs from vertex = to y. But multi-digraphs with
loops are not addressed in this work. In this paper we define a round-robin
tournament to be a multi-digraph such that there are exactly two arcs between
each pair of vertices. To our best knowledge, round-robin tournaments were
first studied in [8]. In this master’s thesis round-robin tournaments were called
double-arc tournaments. We call them round-robin tournaments because they
can model round-robin tournaments in real world.

Problems related to disjoint cycles in digraphs have always been an area of



focus. J. C. Bermond and C. Thomassen gave the following conjecture in 1981:

Conjecture 1.1. [/] For any digraph D, if 67 (D) > 2k — 1, then D contains

k disjoint cycles.

The conjecture is trivial for £ = 1 and it was proved for k = 2 in [10] and
for k=3 in [7].
J. Bang-Jensen, S. Bessy and S. Thomassé had a great contribution on this

conjecture. In [1] they proved the following theorem:

Theorem 1.2. For k > 1, every tournament T with §*(T) > 2k — 1 has k
disjoint cycles, each of which has length 3.

For convenience, we call a cycle with length ¢ an g-cycle. Note that if a
tournament has an g-cycle, then we can find a 3-cycle whose vertex set is a
subset of the vertex set of the g-cycle. This can be easily proved by induction
on q. Thus whenever a tournament 7' contains k disjoint cycles, it contains k
disjoint 3-cycles.

Tending to generalize Theorem 1.2 in another dimension, N. Lichiardopol

raised another conjecture in 2010:

Theorem 1.3. [6] For k > 1 and q > 3, every tournament T with §*(T) >
(g — 1)k — 1 has k disjoint g-cycles.

When ¢ = 3 this conjecture is exactly Theorem 1.2. The case ¢ = 4 was
proved in the master’s thesis of S.Zhu [13]. F. Ma, D. B. West and J. Yan proved
this conjecture for ¢ > 5 in [9].

In this paper we firstly generalize Theorem 1.2 to ordinary multipartite tour-

nament case:

Theorem 1.4. For k > 1, every ordinary multipartite tournament T with
0T(T) > 2k — 1 has k disjoint 3-cycles.

Theorem 1.4 will be proved in Section 2.
In fact, at first we wanted to generalize Theorem 1.3 to ordinary multipartite
tournament case, but we found a counterexample when ¢ = 4. Hence, we extend

Theorem 1.3 to another case, namely the round-robin tournament:

Theorem 1.5. For k > 1 and q > 3, every round-robin tournament T with
OH(T) > 2(q — 1)k — 2 has k disjoint q-cycles.



Theorem 1.5 will be proved in Section 3.
Furthermore, we find that although the final result in [13] is correct but with
flaws in the proof. So we list all the flaws in [13] and then present a proof with

better completeness in Section 4.

2 Disjoint 3-cycles in Ordinary Multipartite Tour-

naments

2.1 Preparation

In order to prove Theorem 1.4,we prove a slightly stronger theorem:

Theorem 2.1. Let k be a positive integer with k > 1. Suppose T' is an ordinary
multipartite tournament with 6T (T) > 2k — 1. For any k — 1 disjoint 3-cycles
F ={C1,Cq,...,Cr1} in T, let W = V(C,)UV(Co)U...V(Cr-1), U =
V(T)\W, there exist k disjoint 3-cycles whose vertex set intersects U on at

most 4 vertices.

It deserves to be noted that Theorem 1.4 can be directly deduced from
Theorem 2.1 by induction on k.
We still denote V(C;) by C; when it causes no defusion.

First of all, some lemmas frequently used in the proofs are listed below.

Lemma 2.2. In an ordinary multipartite tournament, if x — y,y — z, then

there is an arc between x and z.

Proof. Since © — y,y — z, x and z belong to different parts, thus there is an

arc between = and z. O

Lemma 2.3. For every acyclic multipartite tournament with n vertices, there
1s an ordering of the vertices vy, vs, ..., vy, such that for any i < j, there is no

arc from v; to vj.

We can prove this lemma by induction on n.
Note that “no arc from v; to v;” means that either there exists no arc between

v; and v, or there exists an arc v; — v;.

Lemma 2.4. If a multipartite tournament has a cycle, then it has a 3-cycle.



Proof. Suppose the cycle has length k. We prove it by induction on k.

When k = 3, this is obvious.

For k > 4, let the cycle be v;1 — vo — v3 — ... = v — v1. By Lemma 2.2,
there is an arc between vy and vs. If v3 — v, we get a 3-cycle vi — vy — vs.
If v; = v3, we get a (k — 1)-cycle vy = v3 = ... = v — v;. By induction
hypothesis we can get the result. O

Lemma 2.5. [5] (See also Theorem 3.1.16 of [12]) Suppose A and B are two
disjoint set of vertices in a tournament, and there is no k-matching from A to
B. Then there exists a subset C of AU B containing at most k — 1 vertices,
such that the endpoints of all arcs from A to B belong to C.

We will prove Theorem 2.1 by induction on k.

When k = 1, obviously T has a cycle. By Lemma 2.4 it has a 3-cycle. Thus
Theorem 2.1 holds.

For k > 2, we argue by contradiction. Suppose there exist k — 1 disjoint
3-cycles F = {C4,C4,...,Cr_1} in T, but do not exist k disjoint 3-cycles which
fit the theorem. We name it “the ultimate assumption”.

Recall that W = V(C;) UV (Co) U ... V(Ck_1), U = V(T)\W. Note that
the sub-multipartite tournament of 7" induced by U is an acyclic ordinary mul-
tipartite tournament. Otherwise this sub-multipartite tournament contains a
3-cycle, which contradicts the ultimate assumption.

Moreover, here are two important definitions we need to present:

Definition 2.6. Fori 3-cycles in F, i € {1,2}, we say that they can be extended
if and only if there exist i+ 1 disjoint 3-cycles whose vertices belong to the initial

3-cycles and U, and intersect U on at most four vertices.

Note that once there exists 1 or 2 cycles in F that can be extended, the

ultimate assumption would be violated.

Definition 2.7. For arc zy,x,y € W, and vertices z,z € U, z is a breaker of

xy if and only if v — y — z — x forms a 3-cycle.

Notation: Below we denote the 3-cycle x =y — z — x by (zyzx).

2.2 Several Prepositive Claims

Claim 1. For every C; € F, C; has at most two arcs with breakers, and every

arc has at most three breakers. Thus C; has at most siz breakers.



Proof. Let C; = (zyzz).

(1) Suppose for contradiction that every arc of C; has a breaker. Let v,
Uyz, U.z be breakers of zy, yz and zx respectively. Since v,, — z — vy, there
exists an arc between v, and v,,. Furthermore, we have v., — v,,. Otherwise,
3-cycles xYvyy, 2Vy,v., can extend C;, which violates the ultimate assumption.
Symmetrically, we have vy, — vy and vzy — v.,, which forms a 3-cycle in U.
This contradicts the fact that U is acyclic;

(2) For the sake of contradiction, we assume that the arc zy has four breakers,
which were named v1,v2, v3, v4 respectively.

Consider the ordinary multipartite tournament 77 = T — {z,y}. We have
dH(T") > 2(k—1)—1, and T" has k — 2 disjoint 3-cycles, i.e. F\{C;}. Applying
induction on k, we know that there is a collection F' in T”, which contains
k — 1 disjoint 3-cycles, and F’ intersects U U {z} on at most four vertices. Since
V1,02, V3,04, 2 € UU{z}, at least one of those five vertices is not included in F.
In the following content, the selection of vertex is presented.

(2.1) Suppose that z is not included in F’. Thus, the collection F' U C;
contains k disjoint 3-cycles, and its vertices intersect U on at most four vertices.
This contradicts the ultimate assumption.

(2.2) Suppose that z is included in F'. Without loss of generality, v; is not
included in F’. Therefore 7' U {(zv1yz)} contains k disjoint 3-cycles, and its
vertex set intersects U on at most four vertices. This contradicts the ultimate

assumption. O

Thanks to Lemma 2.3, U can be divided into two subsets U; and U, such
that there is no arc from U; to Us. Also the size of U; can be an arbitrary

integer between 0 and |U].

Claim 2. For arbitrarily chosen partition Uy,Us of U such that there is no arc
from Uy to Us, and for all i € [1,k — 1], the following three properties are true:

(1) If d*(Uy, C;) > 4, then there exists a 2-matching from Uy to C;.

(2) If d+(Uy, C;) > 8, then there exist a 3-matching from Uy to C;, otherwise
C; can be represented as (xyzx) such that yz has three breakers in Uy, xy has
two breakers in Uy, dy; (z) > 5, da () =0, da (y) <1, da(z) <1.

(3) If d*(Uy, C;) > 8, then there does not exist a 2-matching from C; to Us,
and d+(C;,Us) < 3.



By reversing each arc in T and using Claim 2, we can easily obtain the

following results:

The reversing claim. (1) If dt(C;,Us) > 4, then there exists a 2-matching
from C; to Uy;

(2) If d*(C;,Up) > 8, then there exist a 3-matching from C; to Us, otherwise
C; can be represented as (x'y'z'z") such that 'y’ has three breakers in Us, y'z’
has two breakers in Us, da (2') 25, dy, (') =0, dyy (o) < 1, dyy, (v') < 15

(3) If dt(C;,Us) > 8, then there does not exist a 2-matching from Uy to C;,
and d* (U, C;) < 3.

Now we start to prove Claim 2.

Proof. (1) We prove it by contradiction. Assume that there exists no 2-matching
from U; to C;. According to Lemma 2.5, and E(U;, C;) > 4, there exists « € C;
such that x belongs to all arcs from U; to C;. Assume in-neighbors of = on U; are
U1, U2, U3, Us. Suppose x — y in C;, we find that for any j € [1,4],u; — = — .
u; and y must therefore be adjacent, and furthermore y — u;. Hence u; is a
breaker of xy, which contradicts Claim 1.

(2) Suppose that there exists no 3-matching from U; to C;. By Lemma
2.5, there exist x,y € Uy U C; such that all arcs from U; to C; contain = or
y. Since E(U1,C;) > 8, z and y can not both be in U;. Without loss of
generality, assume that z € U; and y € C;. Now suppose y — z in C;. Since
E(Uy, C;) > 8, there exist four vertices(different from x) uq,ug, us, uy € Uy such
that for any j € [1,4],u; — y — z. Hence u; and z are adjacent. Moreover,
z — uj. Therefore, u1,us,us,us are yz breakers, which contradicts Claim 1.
Thus z,y € C;.

Without loss of generality, let C; = (zyzz). Assume di; (y) < 2. Since
E(Uy,C;) > 8, and all arcs from U; to C; contain z or y, we have dy, (z) > 6.
Thus, there exist four vertices in U; that have arcs to & but have no arc to
y. Proceeding with an argument similar to the above, we know that these four
vertices are breakers of yz, which poses a contradiction. Thus d; (y) > 3.

Assume dp; (y) > 4. There exist four vertices in U; that have arcs to y.
Proceeding with an argument similar to the above, we know these four vertices
are breakers of yz, which poses a contradiction. Thus dj;, (y) <3.

Now we have di; (y) = 3. Since E(U,C;) > 8, and all arcs from U; to C;

contain x or y, we have di; (z) > 5. Hence there exist at least two vertices in



U1 which have arcs to x but have no arc to y. This means xy has at least two
breakers in U;. Similarly, we can prove yz has three breakers in U;. Next, let
one zy breaker be x1, one yz breaker be y.

Assume there exists 2’ € Us such that + — 2’. We have 1 — x — 2, which
means ' — x1. Therefore, (zz'x12) and (yzy1y) extend C;, which contradicts
the ultimate assumption. Thus dj;_(z) = 0.

Assume there exist two vertices y,,ys € Us which are out-neighbors of y.
Then we can find that * — y — yq, ys, hence y,, yp are both adjacent to z. Since
x has no out-neighbor in Us, we have y,,y, — . zy has two more breakers,
which contradicts Claim 1. Thus d; (y) < 1.

Assume there exist two vertices z,,2, € Us which are out-neighbors of z.
For the same reason, these two vertices are adjacent to y. Because we already
have da (y) < 1, then either z, or z, is an in-neighbor of y. Then yz has one
more breakers, which contradicts Claim 1. Thus d; (z) < 1.

(3) We prove it by contradiction. Suppose there exists a 2-matching from
C; to Us.

(3.1) If there exists a 3-matching from U; to C;, then C; can be extended
by two 3-cycles which have the form U; — C; — Uy — Uy;

(3.2) If there does not exist a 3-matching from U; to C;, then suppose that
C; = (zyzz), d?}Q (x) = 0, and the 2-matching from C; to Uy is {yy’, zz'}. At
this time, y — 2’. Otherwise 2z’ will be the fourth breaker of yz. Thus, we have
Tz —y— 2,x =y — 1. Furthermore, since d;}z () = 0, we have ¢/, 2/ — «x.
Hence ¢/, 2’ are two more breakers of the zy, which poses a contradiction.

Consequently, there is no 2-matching from C; to Us. And by the reversing
claim (1) we immediately have d*(C;, Us) < 3. O

Claim 3. For any C;,C; € F, it is impossible that there exist 3-matchings from
U1 to Ci, CZ' to Cj, and Cj to U2.

Proof. Assume that there exist 3-matchings from U; to C;, C; to Cj, and Cj to
Us.

Suppose that C; = (zyzz) and C; = (2'y’2’2’). Three 3-matchings are
{z12, 91y, 212}, {za’ yy', 22’ }, and {2'x9,y'ya, 2’20} respectively. Since x —
' — w9, x and zo are adjacent. For the same reason, y and 1o, 2z and 2o
are adjacent. Next, we say w is “positively adjacent” if w — wso, “negatively

adjacent” if wy — w, where k € {z,y, z}.



(1) All z,y, z are negatively adjacent. At this time, C;, C; can be extended
by (z2'z27), (yy'y2y), (22'222);

(2) Exactly one of z,y, z is positively adjacent. Without loss of generality,
suppose this vertex is x. At this time £1 — x — x2, hence 9 = z;. C;,C; can
be extended by (zxoz12), (Yy'y2y), (22’ 222);

(3) At least two of z,y, z are positively adjacent. Without loss of generality,
suppose two of them are x and y. Now C; can be extended by (zxoz1), (yy2y19)-

O

Claim 4. For any C;,C; € F, it is impossible that d* (Uy, C;) > 8, d*(C;, C;) >
7, and dt(C;,Us) > 8.

Proof. Assume C; and Cj, whose vertices are {z,y, 2} and {2',y, 2’} respec-
tively, satisfy d*(Uy,C;) > 8,d*(C;,C;) > 7, and d+(C;,Us) > 8. Since
d*(C;,Cj) > 7, we see that there is a 3-matching from C; to Cj.

(1) Assume there exists no 3-matching from both U; to C;, and C; to Us.
Suppose that C; = (zyzz) and C; = (2'y'2’'z’). According to Claim 2 and the
reversing claim, without loss of generality, we assume that yz has three breakers
in Uy, xy has at least two breakers in Uy, 2’y’ has three breakers in Us, and
y'2’ has at least two breakers in Uy. Also df (z) = dy (2') = 0, df (2) < 1,
dy, (2') < 1. Now suppose z1 € U; is an xy breaker but not an in-neighbor of
x', z9 € Uy is a 3’2’ breaker but not an out-neighbor of z. And we denote y1, o
as breakers of yz and z'y’ respectively, which are different from x; and zs.

Firstly, there is no arc from x to z’. Otherwise C;, C; can be extended by
(2222'29), (yzy1y), (¥'y22'y’). Secondly, there is no arc from z to 2’. Otherwise,
as we already know z; — = — 2/, we have 2’ — x;. Thus C;,C; can be
extended by (z'zyz2), (224’2’ 22), (yzy1y). Thirdly, there is no arc from z to
z'. Otherwise, we have z — 2’ — 29, thus 29 — 2. C;, C; can be extended by
(2'2922"), (@'Y yo’), (x12Y21).

However, d*(C;,C;) > 7, there must exist an arc from x to Cj, we get a
contradiction.

(2) Without loss of generality, assume that there exists no 3-matching from
Ui to C;, but one from C; to Us. We let C; = (zyzx), and denote 3-matching of
C; to Cj, Cj to U by {za’,yy’, 22"}, {a'x2,y Y2, 2’22} respectively. According
to Claim 2, yz has three breakers in Uy, xy has two breakers in U;. Specifically,

we denote one of the yz breakers as y;. Besides, we know that da () = 0,



dJUr2 (y) <1, and da(z) < 1. Next, we will construct the contradiction step by
step:

Firstly, we claim that z — z5. Otherwise, because z — 2z’ — 2, we have
zo — z. Now there are two disjoint 3-cycles, i.e. (2z222'22), (x2'x2), because
1 —y — v, y1 and ¢y are adjacent.

(a) If y' — y1, then there exists a 3-cycle (yy'y1y), which can extend C;, C}
with (292229), (z2'x3);

(b) If y; — ¢/, then we have y; — ¥’ — yo, which means y; and y, are
adjacent. Furthermore, yo — y;. Thus, there exists a 3-cycle (y1y'y2y1), which
can extend C;, C; with (202222), (xa'x2).

Secondly, we claim that y — zo. Otherwise, we have z; — y, and z3 becomes
the fourth breaker of yz;

Thirdly, we claim that {zs,y2} — {y,2}. Note that z5 is the only out-
neighbor of y, z in Us. Since y — 3’ — y2, we have yo — 3. Since y2 — y — 2,
we have y» — 2. Since x93 — = — y, we have zo — y. Since zo — y — 2z, we
have x5 — z;

Fourthly we claim that the sub-multipartite tournament of T induced by
{v',y2,2,2'} is acyclic. Otherwise, the cycle inside can extend C;,C; with
(y1y22), (xa'z2). Moreover, we have C; = (2'y’'z’z’). Otherwise, we have
z' — o/, implying that (y'y2z2’) is a cycle, a contradiction. Also we have
y" — z. Otherwise since y' — yo — 2, 2 = ', (¥'y227’) is a cycle, which poses
a contradiction;

Fifthly, we claim that * — ¢’. Otherwise, since + — z’ — y, we have
y'" — x. Besides, we have y' — z and d*(C;,C;) > 7. Hence x — 2/, and
z — a'. Therefore, the 3-cycles (z2'2z0), (2'z222"), (yy'y2y) extend C;, Cj;

Sixthly, we claim that z’ — z5. Otherwise, since 2’ — 2’ — z2, 72 — 2’. So
we find that the 3-cycles (xo2'2'x2), (zy'y2), (231y2) extend C;, C.

From the above analysis, we know that (22'222), (¥ y2xy’), (22y1y22) extend

C;, Cj, which contradicts the ultimate assumption. O

2.3 Analysis on range of &

Here, we want to prove that £ < 6. Let |T| = n. Then @ > (2k — 1)n,
so |T| >4k — 1. Thus |U| = |T| — |W| > (4k — 1) — (3k — 3) = k + 2. When
k > 3, we let |[U;| = 5. Among all 3-cycles in F, we define I as the set of cycles

receiving at least eight arcs from Uy, O as the set of cycles sending at least eight

10



arcs to Us. At last we define P as P = F\(O U I). Note that %, 0, p below are
defined as the cardinality of I, O, P respectively.
Firstly, we obtain lower and upper bounds of arcs leaving U; and entering

T\U; respectively with the following:
5(2k — 1) — 10 < 15i + Tp + 3o0. (2.1)

The 5(2k — 1) on the left-hand side is a lower bound of arcs with heads in Uy,
and 10 represents the number of arcs with heads and tails both in U;. On the
right-hand side, since |U;| = 5 and one cycle has 3 vertices, the number of arcs
from U; to I is at most 15¢. By the definition of I and P, the number of arcs
from U; to P is at most 7p. By the definition of O and the reversing claim
(3), the number of arcs from U; to O is at most 30. We need to point out that
there is no arc from Uy to Us. Thus we get the right side of (2.1). As we have
p=k—1—1i— o0, we can simplify (2.1) to the following form:

3k + 40 — 8 < 8i. (2.2)

Secondly, we estimate the upper and lower bound of arcs which leave P U I and
enter T\(P U I):

3(p+i)(2k—1)—%o3(p+i)[3(p+z’)—1] < 9po+6i0+7p+3i+[15(p+i)—(10k—15—30)].
(2.3)
The left-hand side bounds the number of arcs which have heads in P U I but
no tails there from below. On the right-hand side, 9po, 6i0, 7p, 37 bound the
number of arcs which are from P to O, from I to O(by Claim 4), from P to
Us(by the definition of O and P), and from I to Us(by Claim 2(3)), respectively.
15(p+ 1) is an upper bound of number of arcs between PUT and U; (regardless
of direction). And 10k — 15 — 30 = 5(2k — 1) — 10 — 30 is a lower bound of arcs
leaving U; and entering P U I. Thus, 15(p 4+ i) — (10k — 15 — 30) is an upper
bound of arcs from PUI to Uy. Substitute p =k —1—14i—o0 and (2.2) into (2.3),
we have
160% + (52 — 13k)o + 4k? — 24k < 0. (2.4)

Since o is a real number, the discriminant of (2.4)
—87k? + 184k + 2704 (2.5)

is at least 0. Hence we can get k < 6.

11



2.4 Small Cases of &k

Claim 5. For every C € F, if d¥(Uy,C) > 10, then there exists at least one
3-matching from Uy to C.

Proof. We prove this by contradiction. Assume that there exists a 3-cycle C
such that d* (U, C) > 10, and there is no 3-matching from U; to C.

By Lemma 2.5, there exist z,y € U; UC such that all arcs from U; to C are
adjacent to at least one of them.

(1) If 2,y € Uy, we have at most six arcs from U; to C, which is impossible;

(2) Without loss of generality, we assume x € Uy,y € C. Since E(Uy,C) >
10, y has at least seven in-neighbors in U;\{z}. These vertices dominate y, and
y dominates z. Thus, these seven vertices must be adjacent to z, and all of them
are z’s out-neighbors. Hence yz has at least seven breakers;

(3) If z,y € C, then we let C = (zyzx). Now, it is true that di; (y) < 3,
otherwise yz has four breakers. It is also true that di; (z) < 6, otherwise xy
has four breakers. Therefore, d* (U, C) < 9, which contradicts the assumption.

Consequently, there exists at least one 3-matching from Uy to C. O

Definition 2.8. We say that 3-cycle C' has a 3-cover if and only if there exists
a 3-matching from Uy to C, or two 2-matchings from Uy to C such that they

cover all the three vertices of C.

Claim 6. If there exists a 3-cover from Uy to C € F, then there is no 2-matching
from C to Us. Moreover, we have d+(C,Us) < 3.

Proof. We argue by contradiction. Assume that a 3-cycle C = (xyzz) has a
3-cover from Uy, and a 2-matching to Uy ({za’, 22'}).

(1) Suppose the 3-cover is formed by a 3-matching. We can then extend C
in an obvious manner;

(2) Suppose the 3-cover is formed by 2-matchings, and one of them has tails
in {z,z}. We name this 2-matching {1z, z1z}. This time we find that C can
be extended by (z1z2'x1), (2122'21);

(3) Suppose the 3-cover is formed by 2-matchings {ax,by} and {cy,dz}.
Then there exists a 3-cycle (azx’a).

(3.1) If 2’ and b are adjacent, then the 4-cycle (byzz'b) contains a 3-cycle,

which can extend C' together with (aza’a).
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(3.2) If 2/ and b are not adjacent, we have 2z’ — y because b — y. Then
3-cycles (yzz'y) and (axz’a) extend C. O

We should point out that Claim 5 and Claim 6 are correct if we reverse Uy
and Us, “receiving” and “sending” in the statement.
We name a 3-cycle C; € F as 2-m, 3-c, and 3-m if and only if there exists a

2-matching, 3-cover, and 3-matching from U; to C; respectively.

Claim 7. Suppose a,b,c are arbitrarily chosen vertices in Uy and Y = V(F'),
where F' is a subset of F containing p 3-cycles. If dy(a) > 2p,dy>(b) > 2p —
1,d{(¢) > 2p — 2, then F' has a 3-c cycle, or all the cycles in F' are 2-m.

Proof. We prove this claim by induction on p.

When p = 1, the claim is true.

When p > 2, let k = d*({a,b,c},Y). We have k > 6p — 3 > 3p. Hence there
exists a cycle C; € F' such that d* ({a,b,c},C;) > 4. So C; is 2-m.

(1) It C; is 3-c, the induction is proved;

(2) If C; is not 3-c, then for any x € {a,b,c},d" (x,C;) < 2. By applying the

induction hypothesis on F'\{C;}, we know the statement is true as well. O

Next we will only consider k € {2,3,4,5,6}.

(1) k=2

When k = 2, we have 67(T) > 3. According to Thomassen’s work in [10],
there exist two disjoint 3-cycles C] and C in T'. Now F has exactly one 3-cycle
4.

(1.1) If there exists a cycle C € {Cf, C4} such that V(C)NV(Cy) = ¢, then
C, C; extend C.

(1.2) If both C] and C% have common vertices with Cy, then C7, C4 extend
.

(2) k=3

When k = 3, we have 6+ (T") > 5. Suppose that {C;, C;} are two 3-cycles in
F. Let Uy = {v1,v2}. Then there are at least 2-5—1 = 9 arcs from U; to W,
at most 2-6 — 9 = 3 arcs from W to U;. There are at least 6-5—%~6~5: 15
arcs from W to U, and at least 15 — 3 = 12 arcs from W to U,. Therefore, we
know that there exists a cycle C; € F such that d* (U, C;) > 5. Meanwhile
dt(Uy,Cy) > 3.

(2.1) d* (U, Cj) > 4: In this case C} is a 2-m cycle, and d*(C;,Uz) < 7. As
a result, d*(C;, Us) > 5.
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Since d*(Uy,C;) > 5, C; is 3-c. By Claim 6, there does not exist a 2-
matching from C; to Us. But d*(C;,Us) > 5, by the reversing claim, hence
there exists a 2-matching from C; to Us, which poses a contradiction.

(2.2) d*(Uy,C;) = 3: If C; is a 2-m cycle, we can get a contradiction in
the same way as (2.1). Thus Cj; is not 2-m. Then either v; = C; — vy, or
vy = Cj — vy, If dY(Uy, C;) = 5, then dt(Uy,C;) > 4, C; is 2-m, which poses
a contradiction. Now we only need to consider the case d™(Uy, C;) = 6, Uy — C;.
If there exists an arc from C; to Cj, then d+(C’i,U2) >H5x3—-3x3-3=3.
When E(C;,Us) > 4, we can get a contradiction in the same way as (2.1). Now
we can suppose C; — Cj, and d*(C;,Us) = 3.

Let C; = (zyzz) and C; = (z'y’2'z’). From the above we know each vertex
in C; has at least 3 out-neighbors in U,. Without loss of generality, suppose x
has the largest number of out-neighbors in Us. If d* (x, Us) < 2, there exists an
out-neighbor of 2’ in U which is not an out-neighbor of x (denoted by v{). Now
d™(y,Us) <1, d¥(z,Usz) < 1. There exists an out-neighbor of 4’ in Us different
from v] which is not an out-neighbor of y (denoted by v}). There exists an out-
neighbor of 2’ in U different from v}, v5. Now we have three cycles (za'v]z),
(yy'vhy) and (z2'v4v;z) (i=1if v1 = z and ¢ = 2 if v3 — 2) to extend C; and
Cj, a contradiction. If d* (z,Us) = 3, then d* (y,Us) = d*(z,Uz) = 0. Let v} be
one out-neighbor of z in Us. There exists an out-neighbor of ¢’ in Uy different
from vj. There exists an out-neighbor of 2’ in Uy different from v}, v5. Now we
have three cycles (v;zviv;) (i =1if v;1 — x and i = 2 if vo — ), (yy'vhy) and
(z2'v42) to extend C; and C;, which poses a contradiction.

In the following proof we assume that U; = {v1,v9,v3}.

3) k=14

When k = 4, we have §1(T) > 7, and there are three 3-cycles in F, we call
them C1, Cy and C3. As |Up| = 3, we know that there are at least 3-7—3 = 18
arcs from U; to W, at most 3-9 — 18 = 9 arcs from W to U;. There are at
least 9-7 — % -9.8 =27 arcs from W to U, and at least 27 — 9 = 18 arcs from
W to Us. Therefore, 3-cycles in F cannot be 2-m, 2-m, and 3-c respectively.
Otherwise, there are at most 7+ 7+ 3 = 17 arcs from W to Us.

Claim 8. At least two 3-cycles in F are 3-c.

Proof. Because d¥(Uy) > 7, there are at least 7 arcs from u; to W. So without

loss of generality, we suppose d* (vy,C1) = 3.
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(3.1) If d* ({ve,v3},C1) = 0, then d* (ve, CoUC3) > 6, and d ™ (v3, CoUC3) >
5. Thus, Cy and Cj are 3-c;

(3.2) If d*({w2,v3},C1) > 1, then O is a 3-c cycle. Note that there are at
least 4,3,2 arcs from vy, v9,v3 to Cy U C3 respectively. As Claim 7 goes, there

are at least one 3-c cycle in Cy U C5. Consequently, the claim is true.
O

Without loss of generality, let C7; and Cs be 3-c cycles. There does not
exist a 2-matching from U; to C3, which means d* (U, C3) < 3. As a result,
d™(Uy,C1 UCy) > 15, and thus one of C; and Cy (let it be Cy) is 3-m.

Moreover, we can know there are at least 6 - 7 — % -6 -5 = 27 arcs from
C1UCy to UUC3. Among them at most 18 — 15 =3 to Uy, and 2-3 = 6 to
U,. Thus there are at least 18 remaining arcs which must go to C5. Therefore
there exists a 3-matching from C; to Cj.

As the last step, we know d*(Cs5,Us) > 18 — 3 — 3 = 12, hence there exists
a 3-matching from C3 to U;. Consequently, there are 3-matchings from U; to
C4, C; to C3, and C3 to Us. This contradicts Claim 3.

(4) k=5

When k = 5, we have 67 (T) > 9, and there are four 3-cycles in F, we
call them Cj, Cy, C3 and Cy. Similar to case (3), we get d* (U, W) > 24,
dT(W,Uy) <12, d¥(W,U) > 42, and dT (W, Usy) > 30. Therefore, 3-cycles in F
cannot all be 2-m cycles. Otherwise, d™(W,Us) < 4-7 = 28.

Claim 9. At least two cycles in F are 3-c cycles.

Proof. As there are at least 9 arcs from u; to W, we suppose d*(u1,C1) = 3
without loss of generality.

(4.1) If d* ({va,v3},C1) = 0, then d¥ (ve, CoUC3UC,) > 8, and d (v3, Co U
C3 UCy) > 7. Without loss of generality, let v — Cy U C3. As we know
d*(v3,C U C3) > 4, then ug is adjacent to both cycles. Thus, Cs, Cs are 3-c
cycles.

(4.2) If d* (v, v3,Cy) > 1, then Cy is a 3-c cycle. There are at least 6,5,4
arcs from vy, vs,v3 to Co U C3 U Cy respectively. By Claim 7, there are at least

one 3-c cycle in Cs U C5 U Cy. Consequently, the claim is true. O

Without loss of generality, let C; and C3 be 3-c¢ cycles.Then there exist

at least 3,2,1 arcs from vy,vs,v3 to C3 U Cy respectively. Therefore one of
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these two cycles, let it be Cs3, is 2-m. Then C} is not 2-m, which means that
dT(U1,C4) < 3. As a result, d*(Uy,C; UCy U C3) > 21. We observe that for
any C;,i = 1,2,3, if C; is not a 3-m cycle, d*(Uy,C;) < 6. Hence at least one
of C1,C4,C5 is 3-m. Let this cycle be Cf.

Moreover, we notice that d*(C; UC,UC5,U;) <3-9—21=6,d"(C;UCyU
C3,Uz) < 3+3+7 = 13, and d ™ (C1UC,UC3, T\ (C1UC2UC3)) > 9-9—3-9-8 = 45.
Thus dT(C1UC2UCs, Cy) > 45—13—6 = 26, which means that d*(Cy, Cy) > 8,
and there exists a 3-matching from C; and Cjy.

As the last step we know that d*(Cy, Us) > 30— 13 = 17. Hence there exists
a 3-matching from C4 to Us. So far, we have found 3-matchings from U; to Cf,
C4 to C4, and Cy to Uy. This contradicts Claim 3.

(5) k=6

When k = 6, we have 6T (T') > 11, and there are five 3-cycles in F, we call
them C7, Cy, C3, Cy and Cs. Similar to case (3), we can get d* (U, W) > 30,
dT(W,Uy) < 15, dT(W,U) > 60, and dT (W, Usy) > 45. Therefore, 3-cycles in F
cannot all be 2-m cycles. Otherwise, d™(W,Us) < 5-7 = 35.

Claim 10. There are either at least three 3-c cycles, or two 3-c and two 2-m

cycles in F.

Proof. As there are at least 11 arcs from u; to W, we suppose d* (vy,C1) = 3
without loss of generality.

(5.1) If d*({ve,v3},C1) = 0, then d*(vy,Co U C3 U Cy U C5) > 10, and
d* (v3,CoUC3UCLUCs) > 9. Without loss of generality, let vy — Co UC3. We
know that d*(v3, Co U C3) > 3.

(5.1.1) If vg is connected to both Cy and Cs, then Cs, C5 are both 3-c cycles.

(5.1.2) If vz has no arc to one of these two cycles (let it be Us), then vg —
C3UC4UCs, and d* (ve,Cy U C5) > 4. Now, Cy and Cj are 3-c cycles.

(5.2) If d*({v2,v3},C1) > 1, then O is a 3-c cycle. Note that there are at
least 8,7,6 arcs from wvq,vo,v3 to Cy U C3 U Cy U C5 respectively. As Claim 7
goes, there are at least one 3-c cycle in Co U C3 U Cy U Cs.

As a result, we know that there exist at least two 3-c cycles in F(let them
be Cy and C3). Now there are at least 5,4, 3 arcs from vy, vy, v3 to C3UCyUC5
respectively. Without loss of generality, we assume that d™ ({vy,vs,v3}, C3) > 4,
Cjs is then a 2-m cycle.

(5.2.1) If C5 is a 3-c cycle, we get three 3-cycles C;, Cy and Cj3, and the

claim is proven.
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(5.2.2) If C5 is not a 3-c cycle, then each vertex of {uy, us, uz} has at least
two arcs to C3. This means there are at least 3,2,1 arcs from vy, vo, v3 to C4,UCH
respectively. Thus without loss of generality, Cy is 2-m. Hence the claim is also
true. O

Now consider the case when Ci,Cs,C3 are 3-¢ cycles. Now we assume
C4, C5 are not 2-m. Otherwise, it can be dealt with as in the next case. Thus,
dT(Uy,C4) < 3,and d* (U1, Cs) < 3. As aresult, we have d* (U, C,UC2UC3) >
30 — 3 -2 = 24. This result indicates that without loss of generality, C7,C5 are
both 3-m cycles, and d*(C; UCy U C3,U1) <3-9—24 = 3.

According to Claim 6, d*t(C;UC2UCs, Us) < 9, and dt(C1UCUCs, T\ (CyU
CyUCs)) > 9-11—1.9.8 = 63. Hence dT(C1UC,UCs, C4UCs) > 63—9—3 = 51.
So one of C1, Cy and Cj5 (let it be C1), has 3-matchings to both Cy and Cs.

As the last step, we have dT(Cy U Cs,Us) > 45 — 9 = 36. Assume that
d*™(Cy,Us) > 18, then there exists a 3-matching from Cy to Us. Now, there are
3-matchings from U; to Ci, Cy to Cy, and C5 to Us. This contradicts Claim 3.

Next, we consider the case where C4, Cy are 3-c, and C3,Cy are 2-m. Obvi-
ously, Cs is not 2-m and thus d* (U, Cs) < 3. Therefore, d* (U, C; UCsUC3U
Cy) > 27,dT(CLUCUC5UCY, Uy) < 9, dT (C1UCUC3UCY, Us) < 3-247-2 = 20,
and dT(C; UC2 UC3UCy, T\(C1UC,UC3UCy)) >12-11 — 5 -12-11 = 66.
Consequently, we have d+(C; U Cy U C3 U Cy,C5) > 37, which is obviously
impossible.

Now, when k = 2,3,4,5,6, we can always reach a contradiction. Thus the

proof of Theorem 2.1 is completed.

3 Disjoint Cycles in Round-Robin Tournaments

In this section we suppose T is a round-robin tournament.

Definition 3.1. If uv and vu are both arcs in T, we call vu an opposite arc of

uv.

To prove Theorem 1.5, we prove the following theorem in order to “extract”

an tournament from an round-robin tournament:

Theorem 3.2. For any positive integer d > 1, any round-robin tournament T’
satisfying 67 (T) > 2d contains a tournament T’ satisfying 6T (T") > d.
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Proof. We delete the arcs of T step by step until it becomes an empty graph,

and reconstruct 7”.

e For any pair of vertices u and v, if there are two arcs from u to v, we
delete exactly one of them and reach a digraph 77, we delete both of them
and reach a digraph T7.

o If there exists a cycle C7 in T, we delete arcs in C; and opposite arcs of
C1. If there still exists a cycle Co, we delete arcs in Cy and opposite arcs
of C5. Continue this process until there are no cycles. We get a series of
edge-disjoint cycles C1,Cy, ..., ), and finally we reach an acyclic digraph
Ts.

o If there exists some paths in 75, we find a longest path P;, and delete
arcs in P, and opposite arcs of P;. If there still exists some paths, we
find a longest path P,, and delete arcs in P, and opposite arcs of Ps.
Continue this process until we reach an empty graph. We get a series of
path P, P, ..., P,.

Let 7" be Ty UC1 UC, U---UC,UP,UP,U---UP,. Obviously T” is a
tournament. Next we only need to prove 61 (7") > d.

For any vertex v, if v is not an endpoint of any path P;, then the out-degree
of v in T must be an even number 2k, and its out-degree in T” must be k.

If v is an endpoint of some paths in {Pi,...FP,}, then suppose P; is the
path which has the smallest subscription. Before deleting arcs in P;, the di-
graph is acyclic, and P; is a longest path. Thus after deleting arcs in P; and
opposite arcs of P;, v becomes an isolated vertex. Hence v is not an endpoint
of Piy1,Piyo,... P;. This means that v is the endpoint of exactly one path in
{P1,... P;}. Consequently, the out-degree of v in T must be an odd number
2k + 1, and its out degree in TV must be k or k + 1. As 2k + 1 > 2d, we have
k > d. Then we complete the proof. O

4 List of Flaws

In [13], the author proved Theorem 1.3 when ¢ = 4. We restate it as the

following theorem:

18



Theorem 4.1. For any positive integer k > 1, any tournament with minimum

out-degree at least 3k — 1 contains k disjoint cycles of length 4.
Actually the author proved a slightly stronger argument than Theorem 4.1.

Theorem 4.2. For any positive integer k > 1, if T is a tournament which has
dT(T) > 3k — 1, then for any k — 1 disjoint 4-cycles F = {C1,Ca,...,Cr_1},
let W=V(C)UV(Co)U...V(Ck_1) and U = V(T)\W, there exist k disjoint

4-cycles whose vertex set intersects U on at most seven vertices.

We carefully read [13], and found the proofs in [13] are mostly correct. How-
ever, there are some typos in [13]. And some proofs are not rigorous. Here
we correct those typos and offer rigorous proofs of some claims, so that other
readers can understand the result easier.

The author proved Theorem 4.2 by induction on k. For k > 2, the author
assumed that there exist k — 1 disjoint 4-cycles F = {C1,Cs,...,Cr_1}, let
W =V(C)UV(Cy)U...V(Ckg—1) and U = V(T)\W, there do not exist k
disjoint 4-cycles whose vertex set intersects U on at most seven vertices.

According to Rédei’s Theorem (see Theorem 2.2.4 of [1]), any tournament
has a Hamiltonian dipath. We can order the vertices of U as vy, vo, ..., v,, such
that for every i, v;41 — v;. Obviously the sub-digraph of T" induced by U has
no 4-cycles, thus there is no arc from v; to v; when j —4 > 3.

From Claim 1 to Claim 6 the author supposed that U; = {v1,va,...,v6},
S ={vr}, and Uy = U\(U U S).

Claim 1. For any 4-cycle C € F, every 3-path of C' has at most siz breakers.

Claim 2. Let C € F. If d*(Uy,C) > 13, then there exists a 3-matching from
U1 to C

Claim 3. Let C € F. If d*(C,Uy) > 7, then there exists a 2-matching from C
to Uy. If d*(C,Us) > 13, then there exists a 3-matching from C to Us.

Claim 4. Suppose C; and C; are two 4-cycles in F. If d*(Uy,C;) > 13 and
dt(C;,Uz) > 13, then d*(C;,C;) < 12.

Claim 5. Let S; and Sy be two disjoint vertex sets satisfying |S1| < 4 and
|Sa| = 4. If d¥(S1,82) > 5, then there exists a 2-matching from Sy to Sy. If
d*(S1,S52) > 9, then there exists a 3-matching from Sy to Ss.
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Claim 6. Let C € F. If there exists a 3-matching from Uy to C, then there is
no 3-matching from C to Uy. Conwversely, if there exists a 3-matching from C

to Uy, then there is no 3-matching from Uy to C.

After proving Claim 1 to Claim 6, the author proved k < 7. After that
the author proved that k = 2,3,4,5,6 are all impossible. During the course
of the proofs the author supposed that Uy = {v1,v9,v3,v4}, S = {vs,v6}, and
Us =U\(U; US).

We point that the author mainly has four flaws in the proof:
Flaw 1. The proof of Claim 4 is not rigorous.
In order to offer a rigorous proof of Claim 4, firstly we prove another claim:

Claim 4.1. Suppose C; and C; are two 4-cycles in F. If {v;, u1, vi,u0, vi,usg} is
a 3-matching from Uy to C; and {u}v;, ,u5v;,, u5v,,} is a 3-matching from C;

to Uy), then there does not exist a 3-matching from {uy,uq,us} to {uf,uy, us}.

Proof. Without loss of generality suppose that i3 > is > i1 and j; > jo > j3.
Assume that there exists a 3-matching from {uy,ua,us} to {u}, uh, u}.

(1) If uguf is in the matching, we extend C; and C; by (vi,uzusvj, ... v,),
(Vip Uauhv 5,05, ) and (vg, ug vy, vs, ) (if wiw] is in the matching), or by (vi,usuvj, . .. v,),
(Vi uau vy, v5,) and (v, urusvs, v, ) (if wiuh is in the matching);

(2) If uguf is in the matching, we extend C; and C; by (vi,usubvj,vi,),
(Vi U2UR V5, ), and (v;, ur i vy, v;, ) (if wi) is in the matching), or by (vi, ususv;,viy),
(Vi Uty v, 04, ), and (v;, uruivjv;, ) (if wyuf is in the matching);

(3) If ugu) is in the matching, we extend C; and C; by (vi,usufvj, vs,),
(Vi U2URVj, V4, ), and (v;, uruHV,, Vi, ) (if ugub is in the matching), or by (vi,usuwj vy, vi,),
(Vi U2uh;,v;, ), and (v;, urusv,,v;, ) (if wics is in the matching).

O
Now we are ready to offer the proof of Claim 4.

Proof. Let C; be (zyztz) and C; be (2'y'z't'a’) respectively. Because d*(Uy, C;) >
13 and d*(Cj,Usz) > 13, by Claim 2 and Claim 3 there exists one 3-matching
from U; to C;, and one from C; to Us. Suppose they are {v;, z,v;,y, v, 2} and
{z'vj,,y'v),, 2'vj, } without loss of generality.

Assume that d*(C;, C;) > 13. Asd* ({t},C;) < 4, wehaved™ ({z,y, z},C;) >

9. We consider three sub-cases:
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(1) At least two of x,y, z have 4 arcs to C;. Without loss of generality, we
suppose that d*(z,C;) = 4,d*(y,C;) = 4. Since d*({z,y,2},C;) > 9, we have
d*(z,C}) > 1. If z dominates at least one vertex in {z’,3’, z’}, then there exists
a 3-matching from {z,y, 2z} to {2/, y’,2’}. This contradicts Claim 4.1. If z does
not dominate anyone of {z’,y’,2’}, then z — '. In this case we can construct
an “almost” 3-matching {zy’,y2’, zt'z’} from {x,y,z} to {«/,y’,2’}. This can
cause a contradiction in the same way as the proof of Claim 4.1;

(2) Exactly one of x,y,z has 4 arcs to C;. Without loss of generality we
assume that d*(z,C;) = 4,d"(y,C;) = 3, and d¥(z,C}) > 2. As a result, z
dominates at least one vertex in {z’,',2'}. Suppose z — z’. y dominates at
least one vertex in {a’,y'}. Suppose y — y'. At last, we have x — z’. Hence
we have a 3-matching from C; to C;, which contradicts Claim 4.1;

(3) All of z,y, z have at most 3 arcs to C;. In this case we have d*(z,C;) =
dt(y,C;) = d*(z,C;) = 3, and thus d* (t,C;) = 4. Hence, x dominates at least
one vertex in {z/,y/,2'}. Suppose x — /. y dominates at least one vertex in
{y’,2'}. Suppose y — y’. At last, we have t — 2/, which means that there exists
an “almost” 3-matching {za’, yy’, 2t2’} from {z,y, 2z} to {z/,y/,2’}. This can

cause a contradiction in the same way as the proof of Claim 4.1. O

Flaw 2. There are four typos in the proof of Claim 6.

(1) In sub-case (1), third paragraph, sizth row, “C = (vsuj, ... Uj,Uk,v3)”
should be “(vsuj, ... wj,ug,v3);”

(2) In sub-case (2), third paragraph, sizth row, “B = (vsuj, ... U; Uk, )"
should be “(vauj, ... u; ug,v3);”

(8) In sub-case (8), third paragraph, third row, “(viuj, ...urug,v1)” should
be “(viujy ... Uz, v1);”

(4) In sub-case (3), third paragraph, fifth row, “(viuj, ... urur,v1)” should

be “(vlujg . u7uk1v1).”
Flaw 3. The proof of “k = 4 is impossible” is not rigorous.

Proof. When k = 4, we have 67 (T) > 11, and there are three cycles in F. On
account of d*(uy, F) > 10 and d* (ug, F) > 9, there exists a cycle C in F such
that d™(Uy,C) > 7. Let C be (zyzt). Without loss of generality, we suppose
=y, y— 2t z—>t,randt — x.

(1) d*(v1,C) = 4, d (ve,C) > 3. Obviously at most one vertex in C' is not

dominated by vy. There are four sub-cases:
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Firstly, vo — {z,y,2}. We will have d¥(x,Us) > 2, d*(¢,U3) > 1. There
exist arcs from x to Uz xv;, zv;, (i < j) and an arc from ¢ to Us tv;. Therefore,
C can be extended by: (a) (veytvve) and (vizazvjve) (§ # 1), (b) (vezzv;ve)
and (viytvvr) (5 =1).

Secondly, vo — {z,y,t}. We will have d* (x,Us) > 2, d*(t,Us) > 2. There
exist arcs from  to Us zv;, 2vj, (i < j) and arcs from ¢ to Us tvy, toy,, (I <m).
Therefore, C' can be extended by: (a) (veytvve) and (vizzvjvi) (§ # 1), (b)
(vazvj ... v2) and (n1ytvmvr) (J =1).

Thirdly, vo — {y,2,t}. We will have d*(x,Us) > 1, d*(¢t,Us) > 2. There
exists an arc  to Uy xv; and arcs from t to Us tvy, t, vy, (I < m). Therefore, C
can be extended by: (a) (veytvivs) and (vizzvvi) (j # 1), (b) (vezzvjve) and
(nytv,vr) (5 =1).

Fourthly, vo — {x,2,t}. We will have d*(z,Us) > 2, d*(t,Us) > 2. There
exist arcs from x to Uy xv;, z,vj, (1 < j) and arcs from ¢ to Us tvy, toy,, (I <m).
Therefore, C' can be extended by: (a) (vazav;ve) and (viytv,v1) (m # i), (b)
(vazzvjve) and (viytv,v1) (M =1).

(2) d*(v1,C) > 3, d*(v2,C) = 4. We can exchange the role of v; and vy
above and get a proof.

Consequently, we can extend C' in all cases, which poses a contradiction.

O

Flaw 4. The proof of “k = 3 is impossible” is not rigorous.

Proof. When k = 3, we have §7(T) > 8, and there are two cycles in F. On
account of d* (uy,F) > 7 and d*(ug, F) > 6, there exists a cycle C' in F such
that d*(Uy,C) > 7. Hence, at most one vertex in C' is not dominated by one
vertex in Uy. Let C be (zyzt). Without loss of generality, we suppose x — v,
y—z,t, z—t,xand t — x.

It is easy to see that d* (x,Us) > 2 and d*(¢,Usz) > 2. Let one out-neighbor
of z in U be v;. Let one out-neighbor of ¢ in U, different from v; be v;. Without
loss of generality, we suppose v1 — y and ve — z. Then two 4-cycles (v1ytv;vq)
and (vezxv;ve) can extend C, which poses a contradiction.

O
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