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1 Introduction
This paper mainly presents a study of digraphs, and we refer the readers to the
book [2] for standard definitions related to digraphs. For a digraph D = (V,A),
if there is an arc from x to y, we write x → y, and call y an out-neighbor of x,
x an in-neighbor of y. For a vertex x of D, we let d+D(x) denote the out-degree
of x, which is the number of out-neighbors of x. Similarly, we let d−D(x) denote
the in-degree of x, let δ+(D) denote the minimum out-degree of V . For U ⊆ V ,
we let d+U (x) denote the number of out-neighbors of x in U , similarly d−U (x)

denote the number of in-neighbors of x in U . For two vertex sets A and B, we
let d+(A,B) denote the number of arcs from A to B. We say there exists a k-
matching from A to B if there exist k arcs from A to B which have no common
endpoints. A tournament is a digraph such that for each pair of vertices x and
y, there exists exactly one arc between x and y. There are many interesting
results about tournaments, we refer interested readers to Chapter 2 of [2]. A
digraph D = (V,A) is called a multipartite tournament if V can be partitioned
into sets V1, V2, ..., Vm, such that for any i < j and any v1 ∈ Vi, v2 ∈ Vj , there
exists exactly one arc between v1 and v2, and for any v1, v2 ∈ Vi, there exists no
arc between v1 and v2. Moreover, if for any i < j, the arcs from Vi to Vj have
a common orientation, then the multipartite tournament is called an ordinary
multipartite tournament. Some properties of ordinary multipartite tournaments
are presented by the work of Bang-Jensen et al [3]. An ordinary multipartite
tournament is also called a uniform multipartite tournament [11]. Note that a
tournament is always an ordinary multipartite tournament, if we partition its
vertex set into sets each of which contains exactly one vertex.

In this work, we also consider the problem of multi-digraph. The concept
of a multi-digraph is a generalization of the concept of a digraph. In a multi-
digraph there might be multi-arcs from vertex x to y. But multi-digraphs with
loops are not addressed in this work. In this paper we define a round-robin
tournament to be a multi-digraph such that there are exactly two arcs between
each pair of vertices. To our best knowledge, round-robin tournaments were
first studied in [8]. In this master’s thesis round-robin tournaments were called
double-arc tournaments. We call them round-robin tournaments because they
can model round-robin tournaments in real world.

Problems related to disjoint cycles in digraphs have always been an area of

2



focus. J. C. Bermond and C. Thomassen gave the following conjecture in 1981:

Conjecture 1.1. [4] For any digraph D, if δ+(D) ≥ 2k − 1, then D contains
k disjoint cycles.

The conjecture is trivial for k = 1 and it was proved for k = 2 in [10] and
for k = 3 in [7].

J. Bang-Jensen, S. Bessy and S. Thomassé had a great contribution on this
conjecture. In [1] they proved the following theorem:

Theorem 1.2. For k ≥ 1, every tournament T with δ+(T ) ≥ 2k − 1 has k

disjoint cycles, each of which has length 3.

For convenience, we call a cycle with length q an q-cycle. Note that if a
tournament has an q-cycle, then we can find a 3-cycle whose vertex set is a
subset of the vertex set of the q-cycle. This can be easily proved by induction
on q. Thus whenever a tournament T contains k disjoint cycles, it contains k

disjoint 3-cycles.
Tending to generalize Theorem 1.2 in another dimension, N. Lichiardopol

raised another conjecture in 2010:

Theorem 1.3. [6] For k ≥ 1 and q ≥ 3, every tournament T with δ+(T ) ≥
(q − 1)k − 1 has k disjoint q-cycles.

When q = 3 this conjecture is exactly Theorem 1.2. The case q = 4 was
proved in the master’s thesis of S.Zhu [13]. F. Ma, D. B. West and J. Yan proved
this conjecture for q ≥ 5 in [9].

In this paper we firstly generalize Theorem 1.2 to ordinary multipartite tour-
nament case:

Theorem 1.4. For k ≥ 1, every ordinary multipartite tournament T with
δ+(T ) ≥ 2k − 1 has k disjoint 3-cycles.

Theorem 1.4 will be proved in Section 2.
In fact, at first we wanted to generalize Theorem 1.3 to ordinary multipartite

tournament case, but we found a counterexample when q = 4. Hence, we extend
Theorem 1.3 to another case, namely the round-robin tournament:

Theorem 1.5. For k ≥ 1 and q ≥ 3, every round-robin tournament T with
δ+(T ) ≥ 2(q − 1)k − 2 has k disjoint q-cycles.
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Theorem 1.5 will be proved in Section 3.
Furthermore, we find that although the final result in [13] is correct but with

flaws in the proof. So we list all the flaws in [13] and then present a proof with
better completeness in Section 4.

2 Disjoint 3-cycles in Ordinary Multipartite Tour-
naments

2.1 Preparation

In order to prove Theorem 1.4,we prove a slightly stronger theorem:

Theorem 2.1. Let k be a positive integer with k ≥ 1. Suppose T is an ordinary
multipartite tournament with δ+(T ) ≥ 2k − 1. For any k − 1 disjoint 3-cycles
F = {C1, C2, . . . , Ck−1} in T , let W = V (C1) ∪ V (C2) ∪ . . . V (Ck−1), U =

V (T )\W , there exist k disjoint 3-cycles whose vertex set intersects U on at
most 4 vertices.

It deserves to be noted that Theorem 1.4 can be directly deduced from
Theorem 2.1 by induction on k.

We still denote V (Ci) by Ci when it causes no defusion.
First of all, some lemmas frequently used in the proofs are listed below.

Lemma 2.2. In an ordinary multipartite tournament, if x → y, y → z, then
there is an arc between x and z.

Proof. Since x → y, y → z, x and z belong to different parts, thus there is an
arc between x and z.

Lemma 2.3. For every acyclic multipartite tournament with n vertices, there
is an ordering of the vertices v1, v2, . . . , vn, such that for any i < j, there is no
arc from vi to vj.

We can prove this lemma by induction on n.
Note that “no arc from vi to vj” means that either there exists no arc between

vi and vj , or there exists an arc vj → vi.

Lemma 2.4. If a multipartite tournament has a cycle, then it has a 3-cycle.
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Proof. Suppose the cycle has length k. We prove it by induction on k.
When k = 3, this is obvious.
For k ≥ 4, let the cycle be v1 → v2 → v3 → ... → vk → v1. By Lemma 2.2,

there is an arc between v1 and v3. If v3 → v1, we get a 3-cycle v1 → v2 → v3.
If v1 → v3, we get a (k − 1)-cycle v1 → v3 → ... → vk → v1. By induction
hypothesis we can get the result.

Lemma 2.5. [5] (See also Theorem 3.1.16 of [12]) Suppose A and B are two
disjoint set of vertices in a tournament, and there is no k-matching from A to
B. Then there exists a subset C of A ∪ B containing at most k − 1 vertices,
such that the endpoints of all arcs from A to B belong to C.

We will prove Theorem 2.1 by induction on k.
When k = 1, obviously T has a cycle. By Lemma 2.4 it has a 3-cycle. Thus

Theorem 2.1 holds.
For k ≥ 2, we argue by contradiction. Suppose there exist k − 1 disjoint

3-cycles F = {C1, C2, . . . , Ck−1} in T , but do not exist k disjoint 3-cycles which
fit the theorem. We name it “the ultimate assumption”.

Recall that W = V (C1) ∪ V (C2) ∪ . . . V (Ck−1), U = V (T )\W . Note that
the sub-multipartite tournament of T induced by U is an acyclic ordinary mul-
tipartite tournament. Otherwise this sub-multipartite tournament contains a
3-cycle, which contradicts the ultimate assumption.

Moreover, here are two important definitions we need to present:

Definition 2.6. For i 3-cycles in F , i ∈ {1, 2}, we say that they can be extended
if and only if there exist i+1 disjoint 3-cycles whose vertices belong to the initial
3-cycles and U , and intersect U on at most four vertices.

Note that once there exists 1 or 2 cycles in F that can be extended, the
ultimate assumption would be violated.

Definition 2.7. For arc xy, x, y ∈ W , and vertices z, z ∈ U , z is a breaker of
xy if and only if x → y → z → x forms a 3-cycle.

Notation: Below we denote the 3-cycle x → y → z → x by (xyzx).

2.2 Several Prepositive Claims

Claim 1. For every Ci ∈ F , Ci has at most two arcs with breakers, and every
arc has at most three breakers. Thus Ci has at most six breakers.
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Proof. Let Ci = (xyzx).
(1) Suppose for contradiction that every arc of Ci has a breaker. Let vxy,

vyz, vzx be breakers of xy, yz and zx respectively. Since vzx → z → vyz, there
exists an arc between vzx and vyz. Furthermore, we have vzx → vyz. Otherwise,
3-cycles xyvxy, zvyzvzx can extend Ci, which violates the ultimate assumption.
Symmetrically, we have vyz → vxy and vxy → vzx, which forms a 3-cycle in U .
This contradicts the fact that U is acyclic;

(2) For the sake of contradiction, we assume that the arc xy has four breakers,
which were named v1, v2, v3, v4 respectively.

Consider the ordinary multipartite tournament T ′ = T − {x, y}. We have
δ+(T ′) ≥ 2(k− 1)− 1, and T ′ has k− 2 disjoint 3-cycles, i.e. F\{Ci}. Applying
induction on k, we know that there is a collection F ′ in T ′, which contains
k− 1 disjoint 3-cycles, and F ′ intersects U ∪{z} on at most four vertices. Since
v1, v2, v3, v4, z ∈ U ∪{z}, at least one of those five vertices is not included in F ′.
In the following content, the selection of vertex is presented.

(2.1) Suppose that z is not included in F ′. Thus, the collection F ′ ∪ Ci

contains k disjoint 3-cycles, and its vertices intersect U on at most four vertices.
This contradicts the ultimate assumption.

(2.2) Suppose that z is included in F ′. Without loss of generality, v1 is not
included in F ′. Therefore F ′ ∪ {(xv1yx)} contains k disjoint 3-cycles, and its
vertex set intersects U on at most four vertices. This contradicts the ultimate
assumption.

Thanks to Lemma 2.3, U can be divided into two subsets U1 and U2, such
that there is no arc from U1 to U2. Also the size of U1 can be an arbitrary
integer between 0 and |U |.

Claim 2. For arbitrarily chosen partition U1, U2 of U such that there is no arc
from U1 to U2, and for all i ∈ [1, k − 1], the following three properties are true:

(1) If d+(U1, Ci) ≥ 4, then there exists a 2-matching from U1 to Ci.
(2) If d+(U1, Ci) ≥ 8, then there exist a 3-matching from U1 to Ci, otherwise

Ci can be represented as (xyzx) such that yz has three breakers in U1, xy has
two breakers in U1, d−U1

(x) ≥ 5, d+U2
(x) = 0, d+U2

(y) ≤ 1, d+U2
(z) ≤ 1.

(3) If d+(U1, Ci) ≥ 8, then there does not exist a 2-matching from Ci to U2,
and d+(Ci, U2) ≤ 3.
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By reversing each arc in T and using Claim 2, we can easily obtain the
following results:

The reversing claim. (1) If d+(Ci, U2) ≥ 4, then there exists a 2-matching
from Ci to U2;

(2) If d+(Ci, U2) ≥ 8, then there exist a 3-matching from Ci to U2, otherwise
Ci can be represented as (x′y′z′x′) such that x′y′ has three breakers in U2, y′z′

has two breakers in U2, d+U2
(z′) ≥ 5, d−U1

(z′) = 0, d−U1
(x′) ≤ 1, d−U1

(y′) ≤ 1;
(3) If d+(Ci, U2) ≥ 8, then there does not exist a 2-matching from U1 to Ci,

and d+(U1, Ci) ≤ 3.

Now we start to prove Claim 2.

Proof. (1) We prove it by contradiction. Assume that there exists no 2-matching
from U1 to Ci. According to Lemma 2.5, and E(U1, Ci) ≥ 4, there exists x ∈ Ci

such that x belongs to all arcs from U1 to Ci. Assume in-neighbors of x on U1 are
u1, u2, u3, u4. Suppose x → y in Ci, we find that for any j ∈ [1, 4], uj → x → y.
uj and y must therefore be adjacent, and furthermore y → uj . Hence uj is a
breaker of xy, which contradicts Claim 1.

(2) Suppose that there exists no 3-matching from U1 to Ci. By Lemma
2.5, there exist x, y ∈ U1 ∪ Ci such that all arcs from U1 to Ci contain x or
y. Since E(U1, Ci) ≥ 8, x and y can not both be in U1. Without loss of
generality, assume that x ∈ U1 and y ∈ Ci. Now suppose y → z in Ci. Since
E(U1, Ci) ≥ 8, there exist four vertices(different from x) u1, u2, u3, u4 ∈ U1 such
that for any j ∈ [1, 4], uj → y → z. Hence uj and z are adjacent. Moreover,
z → uj . Therefore, u1, u2, u3, u4 are yz breakers, which contradicts Claim 1.
Thus x, y ∈ Ci.

Without loss of generality, let Ci = (xyzx). Assume d−U1
(y) ≤ 2. Since

E(U1, Ci) ≥ 8, and all arcs from U1 to Ci contain x or y, we have d−U1
(x) ≥ 6.

Thus, there exist four vertices in U1 that have arcs to x but have no arc to
y. Proceeding with an argument similar to the above, we know that these four
vertices are breakers of yz, which poses a contradiction. Thus d−U1

(y) ≥ 3.
Assume d−U1

(y) ≥ 4. There exist four vertices in U1 that have arcs to y.
Proceeding with an argument similar to the above, we know these four vertices
are breakers of yz, which poses a contradiction. Thus d−U1

(y) ≤ 3.
Now we have d−U1

(y) = 3. Since E(U1, Ci) ≥ 8, and all arcs from U1 to Ci

contain x or y, we have d−U1
(x) ≥ 5. Hence there exist at least two vertices in
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U1 which have arcs to x but have no arc to y. This means xy has at least two
breakers in U1. Similarly, we can prove yz has three breakers in U1. Next, let
one xy breaker be x1, one yz breaker be y1.

Assume there exists x′ ∈ U2 such that x → x′. We have x1 → x → x′, which
means x′ → x1. Therefore, (xx′x1x) and (yzy1y) extend Ci, which contradicts
the ultimate assumption. Thus d+U2

(x) = 0.
Assume there exist two vertices ya, yb ∈ U2 which are out-neighbors of y.

Then we can find that x → y → ya, yb, hence ya, yb are both adjacent to x. Since
x has no out-neighbor in U2, we have ya, yb → x. xy has two more breakers,
which contradicts Claim 1. Thus d+U2

(y) ≤ 1.
Assume there exist two vertices za, zb ∈ U2 which are out-neighbors of z.

For the same reason, these two vertices are adjacent to y. Because we already
have d+U2

(y) ≤ 1, then either za or zb is an in-neighbor of y. Then yz has one
more breakers, which contradicts Claim 1. Thus d+U2

(z) ≤ 1.
(3) We prove it by contradiction. Suppose there exists a 2-matching from

Ci to U2.
(3.1) If there exists a 3-matching from U1 to Ci, then Ci can be extended

by two 3-cycles which have the form U1 → Ci → U2 → U1;
(3.2) If there does not exist a 3-matching from U1 to Ci, then suppose that

Ci = (xyzx), d+U2
(x) = 0, and the 2-matching from Ci to U2 is {yy′, zz′}. At

this time, y → z′. Otherwise z′ will be the fourth breaker of yz. Thus, we have
x → y → z′, x → y → y′. Furthermore, since d+U2

(x) = 0, we have y′, z′ → x.
Hence y′, z′ are two more breakers of the xy, which poses a contradiction.

Consequently, there is no 2-matching from Ci to U2. And by the reversing
claim (1) we immediately have d+(Ci, U2) ≤ 3.

Claim 3. For any Ci, Cj ∈ F , it is impossible that there exist 3-matchings from
U1 to Ci, Ci to Cj, and Cj to U2.

Proof. Assume that there exist 3-matchings from U1 to Ci, Ci to Cj , and Cj to
U2.

Suppose that Ci = (xyzx) and Cj = (x′y′z′x′). Three 3-matchings are
{x1x, y1y, z1z}, {xx′, yy′, zz′}, and {x′x2, y

′y2, z
′z2} respectively. Since x →

x′ → x2, x and x2 are adjacent. For the same reason, y and y2, z and z2

are adjacent. Next, we say w is “positively adjacent” if w → w2, “negatively
adjacent” if w2 → w, where k ∈ {x, y, z}.
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(1) All x, y, z are negatively adjacent. At this time, Ci, Cj can be extended
by (xx′x2x), (yy

′y2y), (zz
′z2z);

(2) Exactly one of x, y, z is positively adjacent. Without loss of generality,
suppose this vertex is x. At this time x1 → x → x2, hence x2 → x1. Ci, Cj can
be extended by (xx2x1x), (yy

′y2y), (zz
′z2z);

(3) At least two of x, y, z are positively adjacent. Without loss of generality,
suppose two of them are x and y. Now Ci can be extended by (xx2x1x), (yy2y1y).

Claim 4. For any Ci, Cj ∈ F , it is impossible that d+(U1, Ci) ≥ 8, d+(Ci, Cj) ≥
7, and d+(Cj , U2) ≥ 8.

Proof. Assume Ci and Cj , whose vertices are {x, y, z} and {x′, y′, z′} respec-
tively, satisfy d+(U1, Ci) ≥ 8, d+(Ci, Cj) ≥ 7, and d+(Cj , U2) ≥ 8. Since
d+(Ci, Cj) ≥ 7, we see that there is a 3-matching from Ci to Cj .

(1) Assume there exists no 3-matching from both U1 to Ci, and Cj to U2.
Suppose that Ci = (xyzx) and Cj = (x′y′z′x′). According to Claim 2 and the
reversing claim, without loss of generality, we assume that yz has three breakers
in U1, xy has at least two breakers in U1, x′y′ has three breakers in U2, and
y′z′ has at least two breakers in U2. Also d+U2

(x) = d−U1
(z′) = 0, d+U2

(z) ≤ 1,
d−U1

(x′) ≤ 1. Now suppose x1 ∈ U1 is an xy breaker but not an in-neighbor of
x′, z2 ∈ U2 is a y′z′ breaker but not an out-neighbor of z. And we denote y1, y2

as breakers of yz and x′y′ respectively, which are different from x1 and z2.
Firstly, there is no arc from x to z′. Otherwise Ci, Cj can be extended by

(z2xz
′z2), (yzy1y), (y′y2x′y′). Secondly, there is no arc from x to x′. Otherwise,

as we already know x1 → x → x′, we have x′ → x1. Thus Ci, Cj can be
extended by (x′x1xx

′), (z2y′z′z2), (yzy1y). Thirdly, there is no arc from z to
z′. Otherwise, we have z → z′ → z2, thus z2 → z. Ci, Cj can be extended by
(z′z2zz

′), (x′y′y2x
′), (x1xyz1).

However, d+(Ci, Cj) ≥ 7, there must exist an arc from x to Cj , we get a
contradiction.

(2) Without loss of generality, assume that there exists no 3-matching from
U1 to Ci, but one from Cj to U2. We let Ci = (xyzx), and denote 3-matching of
Ci to Cj , Cj to U2 by {xx′, yy′, zz′}, {x′x2, y

′y2, z
′z2} respectively. According

to Claim 2, yz has three breakers in U1, xy has two breakers in U1. Specifically,
we denote one of the yz breakers as y1. Besides, we know that d+U2

(x) = 0,
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d+U2
(y) ≤ 1, and d+U2

(z) ≤ 1. Next, we will construct the contradiction step by
step:

Firstly, we claim that z → z2. Otherwise, because z → z′ → z2, we have
z2 → z. Now there are two disjoint 3-cycles, i.e. (z2zz

′z2), (xx
′x2), because

y1 → y → y′, y1 and y′ are adjacent.
(a) If y′ → y1, then there exists a 3-cycle (yy′y1y), which can extend Ci, Cj

with (z2zz
′z2), (xx

′x2);
(b) If y1 → y′, then we have y1 → y′ → y2, which means y1 and y2 are

adjacent. Furthermore, y2 → y1. Thus, there exists a 3-cycle (y1y
′y2y1), which

can extend Ci, Cj with (z2zz
′z2), (xx

′x2).
Secondly, we claim that y → z2. Otherwise, we have z2 → y, and z2 becomes

the fourth breaker of yz;
Thirdly, we claim that {x2, y2} → {y, z}. Note that z2 is the only out-

neighbor of y, z in U2. Since y → y′ → y2, we have y2 → y. Since y2 → y → z,
we have y2 → z. Since x2 → x → y, we have x2 → y. Since x2 → y → z, we
have x2 → z;

Fourthly we claim that the sub-multipartite tournament of T induced by
{y′, y2, z, z′} is acyclic. Otherwise, the cycle inside can extend Ci, Cj with
(y1yz2), (xx

′x2). Moreover, we have Cj = (x′y′z′x′). Otherwise, we have
z′ → y′, implying that (y′y2zz

′) is a cycle, a contradiction. Also we have
y′ → z. Otherwise since y′ → y2 → z, z → y′, (y′y2zy′) is a cycle, which poses
a contradiction;

Fifthly, we claim that x → y′. Otherwise, since x → x′ → y, we have
y′ → x. Besides, we have y′ → z and d+(Ci, Cj) ≥ 7. Hence x → z′, and
z → x′. Therefore, the 3-cycles (xz′z2x), (x

′x2zx
′), (yy′y2y) extend Ci, Cj ;

Sixthly, we claim that z′ → x2. Otherwise, since z′ → x′ → x2, x2 → z′. So
we find that the 3-cycles (x2z

′x′x2), (xy
′y2), (zy1yz) extend Ci, Cj .

From the above analysis, we know that (zz′x2z), (y
′y2xy

′), (z2y1yz2) extend
Ci, Cj , which contradicts the ultimate assumption.

2.3 Analysis on range of k

Here, we want to prove that k ≤ 6. Let |T | = n. Then n(n−1)
2 ≥ (2k − 1)n,

so |T | ≥ 4k − 1. Thus |U | = |T | − |W | ≥ (4k − 1) − (3k − 3) = k + 2. When
k ≥ 3, we let |U1| = 5. Among all 3-cycles in F , we define I as the set of cycles
receiving at least eight arcs from U1, O as the set of cycles sending at least eight

10



arcs to U2. At last we define P as P = F\(O ∪ I). Note that i, o, p below are
defined as the cardinality of I,O, P respectively.

Firstly, we obtain lower and upper bounds of arcs leaving U1 and entering
T\U1 respectively with the following:

5(2k − 1)− 10 ≤ 15i+ 7p+ 3o. (2.1)

The 5(2k − 1) on the left-hand side is a lower bound of arcs with heads in U1,
and 10 represents the number of arcs with heads and tails both in U1. On the
right-hand side, since |U1| = 5 and one cycle has 3 vertices, the number of arcs
from U1 to I is at most 15i. By the definition of I and P , the number of arcs
from U1 to P is at most 7p. By the definition of O and the reversing claim
(3), the number of arcs from U1 to O is at most 3o. We need to point out that
there is no arc from U1 to U2. Thus we get the right side of (2.1). As we have
p = k − 1− i− o, we can simplify (2.1) to the following form:

3k + 4o− 8 ≤ 8i. (2.2)

Secondly, we estimate the upper and lower bound of arcs which leave P ∪ I and
enter T\(P ∪ I):

3(p+i)(2k−1)−1

2
·3(p+i)[3(p+i)−1] ≤ 9po+6io+7p+3i+[15(p+i)−(10k−15−3o)].

(2.3)
The left-hand side bounds the number of arcs which have heads in P ∪ I but
no tails there from below. On the right-hand side, 9po, 6io, 7p, 3i bound the
number of arcs which are from P to O, from I to O(by Claim 4), from P to
U2(by the definition of O and P ), and from I to U2(by Claim 2(3)), respectively.
15(p+ i) is an upper bound of number of arcs between P ∪ I and U1 (regardless
of direction). And 10k− 15− 3o = 5(2k− 1)− 10− 3o is a lower bound of arcs
leaving U1 and entering P ∪ I. Thus, 15(p + i) − (10k − 15 − 3o) is an upper
bound of arcs from P ∪ I to U1. Substitute p = k−1− i−o and (2.2) into (2.3),
we have

16o2 + (52− 13k)o+ 4k2 − 24k ≤ 0. (2.4)

Since o is a real number, the discriminant of (2.4)

−87k2 + 184k + 2704 (2.5)

is at least 0. Hence we can get k ≤ 6.
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2.4 Small Cases of k

Claim 5. For every C ∈ F , if d+(U1, C) ≥ 10, then there exists at least one
3-matching from U1 to C.

Proof. We prove this by contradiction. Assume that there exists a 3-cycle C

such that d+(U1, C) ≥ 10, and there is no 3-matching from U1 to C.
By Lemma 2.5, there exist x, y ∈ U1 ∪C such that all arcs from U1 to C are

adjacent to at least one of them.
(1) If x, y ∈ U1, we have at most six arcs from U1 to C, which is impossible;
(2) Without loss of generality, we assume x ∈ U1, y ∈ C. Since E(U1, C) ≥

10, y has at least seven in-neighbors in U1\{x}. These vertices dominate y, and
y dominates z. Thus, these seven vertices must be adjacent to z, and all of them
are z’s out-neighbors. Hence yz has at least seven breakers;

(3) If x, y ∈ C, then we let C = (xyzx). Now, it is true that d−U1
(y) ≤ 3,

otherwise yz has four breakers. It is also true that d−U1
(x) ≤ 6, otherwise xy

has four breakers. Therefore, d+(U1, C) ≤ 9, which contradicts the assumption.
Consequently, there exists at least one 3-matching from U1 to C.

Definition 2.8. We say that 3-cycle C has a 3-cover if and only if there exists
a 3-matching from U1 to C, or two 2-matchings from U1 to C such that they
cover all the three vertices of C.

Claim 6. If there exists a 3-cover from U1 to C ∈ F , then there is no 2-matching
from C to U2. Moreover, we have d+(C,U2) ≤ 3.

Proof. We argue by contradiction. Assume that a 3-cycle C = (xyzx) has a
3-cover from U1, and a 2-matching to U2 ({xx′, zz′}).

(1) Suppose the 3-cover is formed by a 3-matching. We can then extend C

in an obvious manner;
(2) Suppose the 3-cover is formed by 2-matchings, and one of them has tails

in {x, z}. We name this 2-matching {x1x, z1z}. This time we find that C can
be extended by (x1xx

′x1), (z1zz
′z1);

(3) Suppose the 3-cover is formed by 2-matchings {ax, by} and {cy, dz}.
Then there exists a 3-cycle (axx′a).

(3.1) If z′ and b are adjacent, then the 4-cycle (byzz′b) contains a 3-cycle,
which can extend C together with (axx′a).
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(3.2) If z′ and b are not adjacent, we have z′ → y because b → y. Then
3-cycles (yzz′y) and (axx′a) extend C.

We should point out that Claim 5 and Claim 6 are correct if we reverse U1

and U2, “receiving” and “sending” in the statement.
We name a 3-cycle Ci ∈ F as 2-m, 3-c, and 3-m if and only if there exists a

2-matching, 3-cover, and 3-matching from U1 to Ci respectively.

Claim 7. Suppose a, b, c are arbitrarily chosen vertices in U1 and Y = V (F ′),
where F ′ is a subset of F containing p 3-cycles. If d+Y (a) ≥ 2p, d+Y (b) ≥ 2p −
1, d+Y (c) ≥ 2p− 2, then F ′ has a 3-c cycle, or all the cycles in F ′ are 2-m.

Proof. We prove this claim by induction on p.
When p = 1, the claim is true.
When p ≥ 2, let k = d+({a, b, c}, Y ). We have k ≥ 6p− 3 > 3p. Hence there

exists a cycle Ci ∈ F ′ such that d+({a, b, c}, Ci) ≥ 4. So Ci is 2-m.
(1) If Ci is 3-c, the induction is proved;
(2) If Ci is not 3-c, then for any x ∈ {a, b, c}, d+(x,Ci) ≤ 2. By applying the

induction hypothesis on F ′\{Ci}, we know the statement is true as well.

Next we will only consider k ∈ {2, 3, 4, 5, 6}.
(1) k = 2

When k = 2, we have δ+(T ) ≥ 3. According to Thomassen’s work in [10],
there exist two disjoint 3-cycles C ′

1 and C ′
2 in T . Now F has exactly one 3-cycle

C1.
(1.1) If there exists a cycle C ∈ {C ′

1, C
′
2} such that V (C)∩ V (C1) = ϕ, then

C,C1 extend C1.
(1.2) If both C ′

1 and C ′
2 have common vertices with C1, then C ′

1, C
′
2 extend

C1.
(2) k = 3

When k = 3, we have δ+(T ) ≥ 5. Suppose that {Ci, Cj} are two 3-cycles in
F . Let U1 = {v1, v2}. Then there are at least 2 · 5− 1 = 9 arcs from U1 to W ,
at most 2 · 6− 9 = 3 arcs from W to U1. There are at least 6 · 5− 1

2 · 6 · 5 = 15

arcs from W to U , and at least 15− 3 = 12 arcs from W to U2. Therefore, we
know that there exists a cycle Ci ∈ F such that d+(U1, Ci) ≥ 5. Meanwhile
d+(U1, Cj) ≥ 3.

(2.1) d+(U1, Cj) ≥ 4: In this case Cj is a 2-m cycle, and d+(Cj , U2) ≤ 7. As
a result, d+(Ci, U2) ≥ 5.
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Since d+(U1, Ci) ≥ 5, Ci is 3-c. By Claim 6, there does not exist a 2-
matching from Ci to U2. But d+(Ci, U2) ≥ 5, by the reversing claim, hence
there exists a 2-matching from Ci to U2, which poses a contradiction.

(2.2) d+(U1, Cj) = 3: If Cj is a 2-m cycle, we can get a contradiction in
the same way as (2.1). Thus Cj is not 2-m. Then either v1 → Cj → v2, or
v2 → Cj → v1. If d+(U1, Ci) = 5, then d+(U1, Cj) ≥ 4, Cj is 2-m, which poses
a contradiction. Now we only need to consider the case d+(U1, Ci) = 6, U1 → Ci.
If there exists an arc from Cj to Ci, then d+(Ci, U2) ≥ 5 × 3 − 3 × 3 − 3 = 3.
When E(Ci, U2) ≥ 4, we can get a contradiction in the same way as (2.1). Now
we can suppose Ci → Cj , and d+(Ci, U2) = 3.

Let Ci = (xyzx) and Cj = (x′y′z′x′). From the above we know each vertex
in Cj has at least 3 out-neighbors in U2. Without loss of generality, suppose x

has the largest number of out-neighbors in U2. If d+(x,U2) ≤ 2, there exists an
out-neighbor of x′ in U2 which is not an out-neighbor of x (denoted by v′1). Now
d+(y, U2) ≤ 1, d+(z, U2) ≤ 1. There exists an out-neighbor of y′ in U2 different
from v′1 which is not an out-neighbor of y (denoted by v′2). There exists an out-
neighbor of z′ in U2 different from v′1, v

′
2. Now we have three cycles (xx′v′1x),

(yy′v′2y) and (zz′v′3viz) (i = 1 if v1 → z and i = 2 if v2 → z) to extend Ci and
Cj , a contradiction. If d+(x,U2) = 3, then d+(y, U2) = d+(z, U2) = 0. Let v′1 be
one out-neighbor of x in U2. There exists an out-neighbor of y′ in U2 different
from v′1. There exists an out-neighbor of z′ in U2 different from v′1, v

′
2. Now we

have three cycles (vixv
′
1vi) (i = 1 if v1 → x and i = 2 if v2 → x), (yy′v′2y) and

(zz′v′3z) to extend Ci and Cj , which poses a contradiction.
In the following proof we assume that U1 = {v1, v2, v3}.
(3) k = 4

When k = 4, we have δ+(T ) ≥ 7, and there are three 3-cycles in F , we call
them C1, C2 and C3. As |U1| = 3, we know that there are at least 3 · 7− 3 = 18

arcs from U1 to W , at most 3 · 9 − 18 = 9 arcs from W to U1. There are at
least 9 · 7− 1

2 · 9 · 8 = 27 arcs from W to U , and at least 27− 9 = 18 arcs from
W to U2. Therefore, 3-cycles in F cannot be 2-m, 2-m, and 3-c respectively.
Otherwise, there are at most 7 + 7 + 3 = 17 arcs from W to U2.

Claim 8. At least two 3-cycles in F are 3-c.

Proof. Because d+(U1) ≥ 7, there are at least 7 arcs from u1 to W . So without
loss of generality, we suppose d+(v1, C1) = 3.
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(3.1) If d+({v2, v3}, C1) = 0, then d+(v2, C2∪C3) ≥ 6, and d+(v3, C2∪C3) ≥
5. Thus, C2 and C3 are 3-c;

(3.2) If d+({v2, v3}, C1) ≥ 1, then C1 is a 3-c cycle. Note that there are at
least 4,3,2 arcs from v1, v2, v3 to C2 ∪ C3 respectively. As Claim 7 goes, there
are at least one 3-c cycle in C2 ∪ C3. Consequently, the claim is true.

Without loss of generality, let C1 and C2 be 3-c cycles. There does not
exist a 2-matching from U1 to C3, which means d+(U1, C3) ≤ 3. As a result,
d+(U1, C1 ∪ C2) ≥ 15, and thus one of C1 and C2 (let it be C1) is 3-m.

Moreover, we can know there are at least 6 · 7 − 1
2 · 6 · 5 = 27 arcs from

C1 ∪ C2 to U ∪ C3. Among them at most 18 − 15 = 3 to U1, and 2 · 3 = 6 to
U2. Thus there are at least 18 remaining arcs which must go to C3. Therefore
there exists a 3-matching from C1 to C3.

As the last step, we know d+(C3, U2) ≥ 18− 3− 3 = 12, hence there exists
a 3-matching from C3 to U2. Consequently, there are 3-matchings from U1 to
C1, C1 to C3, and C3 to U2. This contradicts Claim 3.

(4) k = 5

When k = 5, we have δ+(T ) ≥ 9, and there are four 3-cycles in F , we
call them C1, C2, C3 and C4. Similar to case (3), we get d+(U1,W ) ≥ 24,
d+(W,U1) ≤ 12, d+(W,U) ≥ 42, and d+(W,U2) ≥ 30. Therefore, 3-cycles in F
cannot all be 2-m cycles. Otherwise, d+(W,U2) ≤ 4 · 7 = 28.

Claim 9. At least two cycles in F are 3-c cycles.

Proof. As there are at least 9 arcs from u1 to W , we suppose d+(u1, C1) = 3

without loss of generality.
(4.1) If d+({v2, v3}, C1) = 0, then d+(v2, C2 ∪C3 ∪C4) ≥ 8, and d+(v3, C2 ∪

C3 ∪ C4) ≥ 7. Without loss of generality, let v2 → C2 ∪ C3. As we know
d+(v3, C2 ∪ C3) ≥ 4, then u3 is adjacent to both cycles. Thus, C2, C3 are 3-c
cycles.

(4.2) If d+(v2, v3, C1) ≥ 1, then C1 is a 3-c cycle. There are at least 6,5,4
arcs from v1, v2, v3 to C2 ∪ C3 ∪ C4 respectively. By Claim 7, there are at least
one 3-c cycle in C2 ∪ C3 ∪ C4. Consequently, the claim is true.

Without loss of generality, let C1 and C2 be 3-c cycles.Then there exist
at least 3,2,1 arcs from v1, v2, v3 to C3 ∪ C4 respectively. Therefore one of
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these two cycles, let it be C3, is 2-m. Then C4 is not 2-m, which means that
d+(U1, C4) ≤ 3. As a result, d+(U1, C1 ∪ C2 ∪ C3) ≥ 21. We observe that for
any Ci, i = 1, 2, 3, if Ci is not a 3-m cycle, d+(U1, Ci) ≤ 6. Hence at least one
of C1, C2, C3 is 3-m. Let this cycle be C1.

Moreover, we notice that d+(C1∪C2∪C3, U1) ≤ 3 ·9−21 = 6, d+(C1∪C2∪
C3, U2) ≤ 3+3+7 = 13, and d+(C1∪C2∪C3, T\(C1∪C2∪C3)) ≥ 9·9− 1

2 ·9·8 = 45.
Thus d+(C1∪C2∪C3, C4) ≥ 45−13−6 = 26, which means that d+(C1, C4) ≥ 8,
and there exists a 3-matching from C1 and C4.

As the last step we know that d+(C4, U2) ≥ 30−13 = 17. Hence there exists
a 3-matching from C4 to U2. So far, we have found 3-matchings from U1 to C1,
C1 to C4, and C4 to U2. This contradicts Claim 3.

(5) k = 6

When k = 6, we have δ+(T ) ≥ 11, and there are five 3-cycles in F , we call
them C1, C2, C3, C4 and C5. Similar to case (3), we can get d+(U1,W ) ≥ 30,
d+(W,U1) ≤ 15, d+(W,U) ≥ 60, and d+(W,U2) ≥ 45. Therefore, 3-cycles in F
cannot all be 2-m cycles. Otherwise, d+(W,U2) ≤ 5 · 7 = 35.

Claim 10. There are either at least three 3-c cycles, or two 3-c and two 2-m
cycles in F .

Proof. As there are at least 11 arcs from u1 to W , we suppose d+(v1, C1) = 3

without loss of generality.
(5.1) If d+({v2, v3}, C1) = 0, then d+(v2, C2 ∪ C3 ∪ C4 ∪ C5) ≥ 10, and

d+(v3, C2 ∪C3 ∪C4 ∪C5) ≥ 9. Without loss of generality, let v2 → C2 ∪C3. We
know that d+(v3, C2 ∪ C3) ≥ 3.

(5.1.1) If v3 is connected to both C2 and C3, then C2, C3 are both 3-c cycles.
(5.1.2) If v3 has no arc to one of these two cycles (let it be U2), then v3 →

C3 ∪ C4 ∪ C5, and d+(v2, C4 ∪ C5) ≥ 4. Now, C4 and C5 are 3-c cycles.
(5.2) If d+({v2, v3}, C1) ≥ 1, then C1 is a 3-c cycle. Note that there are at

least 8,7,6 arcs from v1, v2, v3 to C2 ∪ C3 ∪ C4 ∪ C5 respectively. As Claim 7
goes, there are at least one 3-c cycle in C2 ∪ C3 ∪ C4 ∪ C5.

As a result, we know that there exist at least two 3-c cycles in F(let them
be C1 and C2). Now there are at least 5, 4, 3 arcs from v1, v2, v3 to C3 ∪C4 ∪C5

respectively. Without loss of generality, we assume that d+({v1, v2, v3}, C3) ≥ 4,
C3 is then a 2-m cycle.

(5.2.1) If C3 is a 3-c cycle, we get three 3-cycles C1, C2 and C3, and the
claim is proven.
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(5.2.2) If C3 is not a 3-c cycle, then each vertex of {u1, u2, u3} has at least
two arcs to C3. This means there are at least 3,2,1 arcs from v1, v2, v3 to C4∪C5

respectively. Thus without loss of generality, C4 is 2-m. Hence the claim is also
true.

Now consider the case when C1, C2, C3 are 3-c cycles. Now we assume
C4, C5 are not 2-m. Otherwise, it can be dealt with as in the next case. Thus,
d+(U1, C4) ≤ 3, and d+(U1, C5) ≤ 3. As a result, we have d+(U1, C1∪C2∪C3) ≥
30− 3 · 2 = 24. This result indicates that without loss of generality, C1, C2 are
both 3-m cycles, and d+(C1 ∪ C2 ∪ C3, U1) ≤ 3 · 9− 24 = 3.

According to Claim 6, d+(C1∪C2∪C3, U2) ≤ 9, and d+(C1∪C2∪C3, T\(C1∪
C2∪C3)) ≥ 9·11− 1

2 ·9·8 = 63. Hence d+(C1∪C2∪C3, C4∪C5) ≥ 63−9−3 = 51.
So one of C1, C2 and C3 (let it be C1), has 3-matchings to both C4 and C5.

As the last step, we have d+(C4 ∪ C5, U2) ≥ 45 − 9 = 36. Assume that
d+(C4, U2) ≥ 18, then there exists a 3-matching from C4 to U2. Now, there are
3-matchings from U1 to C1, C1 to C4, and C5 to U2. This contradicts Claim 3.

Next, we consider the case where C1, C2 are 3-c, and C3, C4 are 2-m. Obvi-
ously, C5 is not 2-m and thus d+(U1, C5) ≤ 3. Therefore, d+(U1, C1 ∪C2 ∪C3 ∪
C4) ≥ 27, d+(C1∪C2∪C3∪C4, U1) ≤ 9, d+(C1∪C2∪C3∪C4, U2) ≤ 3·2+7·2 = 20,
and d+(C1 ∪ C2 ∪ C3 ∪ C4, T\(C1 ∪ C2 ∪ C3 ∪ C4)) ≥ 12 · 11− 1

2 · 12 · 11 = 66.
Consequently, we have d+(C1 ∪ C2 ∪ C3 ∪ C4, C5) ≥ 37, which is obviously
impossible.

Now, when k = 2, 3, 4, 5, 6, we can always reach a contradiction. Thus the
proof of Theorem 2.1 is completed.

3 Disjoint Cycles in Round-Robin Tournaments
In this section we suppose T is a round-robin tournament.

Definition 3.1. If uv and vu are both arcs in T , we call vu an opposite arc of
uv.

To prove Theorem 1.5, we prove the following theorem in order to “extract”
an tournament from an round-robin tournament:

Theorem 3.2. For any positive integer d ≥ 1, any round-robin tournament T

satisfying δ+(T ) ≥ 2d contains a tournament T ′ satisfying δ+(T ′) ≥ d.
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Proof. We delete the arcs of T step by step until it becomes an empty graph,
and reconstruct T ′.

• For any pair of vertices u and v, if there are two arcs from u to v, we
delete exactly one of them and reach a digraph T ′

1, we delete both of them
and reach a digraph T1.

• If there exists a cycle C1 in T1, we delete arcs in C1 and opposite arcs of
C1. If there still exists a cycle C2, we delete arcs in C2 and opposite arcs
of C2. Continue this process until there are no cycles. We get a series of
edge-disjoint cycles C1, C2, . . . , Cp and finally we reach an acyclic digraph
T2.

• If there exists some paths in T2, we find a longest path P1, and delete
arcs in P1 and opposite arcs of P1. If there still exists some paths, we
find a longest path P2, and delete arcs in P2 and opposite arcs of P2.
Continue this process until we reach an empty graph. We get a series of
path P1, P2, . . . , Pq.

Let T ′ be T ′
1 ∪ C1 ∪ C2 ∪ · · · ∪ Cp ∪ P1 ∪ P2 ∪ · · · ∪ Pq. Obviously T ′ is a

tournament. Next we only need to prove δ+(T ′) ≥ d.
For any vertex v, if v is not an endpoint of any path Pi, then the out-degree

of v in T must be an even number 2k, and its out-degree in T ′ must be k.
If v is an endpoint of some paths in {P1, . . . Pq}, then suppose Pi is the

path which has the smallest subscription. Before deleting arcs in Pi, the di-
graph is acyclic, and Pi is a longest path. Thus after deleting arcs in Pi and
opposite arcs of Pi, v becomes an isolated vertex. Hence v is not an endpoint
of Pi+1, Pi+2, . . . Pq. This means that v is the endpoint of exactly one path in
{P1, . . . Pq}. Consequently, the out-degree of v in T must be an odd number
2k + 1, and its out degree in T ′ must be k or k + 1. As 2k + 1 ≥ 2d, we have
k ≥ d. Then we complete the proof.

4 List of Flaws
In [13], the author proved Theorem 1.3 when q = 4. We restate it as the
following theorem:
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Theorem 4.1. For any positive integer k ≥ 1, any tournament with minimum
out-degree at least 3k − 1 contains k disjoint cycles of length 4.

Actually the author proved a slightly stronger argument than Theorem 4.1.

Theorem 4.2. For any positive integer k ≥ 1, if T is a tournament which has
δ+(T ) ≥ 3k − 1, then for any k − 1 disjoint 4-cycles F = {C1, C2, . . . , Ck−1},
let W = V (C1) ∪ V (C2) ∪ . . . V (Ck−1) and U = V (T )\W , there exist k disjoint
4-cycles whose vertex set intersects U on at most seven vertices.

We carefully read [13], and found the proofs in [13] are mostly correct. How-
ever, there are some typos in [13]. And some proofs are not rigorous. Here
we correct those typos and offer rigorous proofs of some claims, so that other
readers can understand the result easier.

The author proved Theorem 4.2 by induction on k. For k ≥ 2, the author
assumed that there exist k − 1 disjoint 4-cycles F = {C1, C2, . . . , Ck−1}, let
W = V (C1) ∪ V (C2) ∪ . . . V (Ck−1) and U = V (T )\W , there do not exist k

disjoint 4-cycles whose vertex set intersects U on at most seven vertices.
According to Rédei’s Theorem (see Theorem 2.2.4 of [1]), any tournament

has a Hamiltonian dipath. We can order the vertices of U as v1, v2, . . . , vn, such
that for every i, vi+1 → vi. Obviously the sub-digraph of T induced by U has
no 4-cycles, thus there is no arc from vi to vj when j − i ≥ 3.

From Claim 1 to Claim 6 the author supposed that U1 = {v1, v2, . . . , v6},
S = {v7}, and U2 = U\(U1 ∪ S).

Claim 1. For any 4-cycle C ∈ F , every 3-path of C has at most six breakers.

Claim 2. Let C ∈ F . If d+(U1, C) ≥ 13, then there exists a 3-matching from
U1 to C.

Claim 3. Let C ∈ F . If d+(C,U2) ≥ 7, then there exists a 2-matching from C

to U2. If d+(C,U2) ≥ 13, then there exists a 3-matching from C to U2.

Claim 4. Suppose Ci and Cj are two 4-cycles in F . If d+(U1, Ci) ≥ 13 and
d+(Cj , U2) ≥ 13, then d+(Ci, Cj) ≤ 12.

Claim 5. Let S1 and S2 be two disjoint vertex sets satisfying |S1| ≤ 4 and
|S2| = 4. If d+(S1, S2) ≥ 5, then there exists a 2-matching from S1 to S2. If
d+(S1, S2) ≥ 9, then there exists a 3-matching from S1 to S2.
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Claim 6. Let C ∈ F . If there exists a 3-matching from U1 to C, then there is
no 3-matching from C to U2. Conversely, if there exists a 3-matching from C

to U2, then there is no 3-matching from U1 to C.

After proving Claim 1 to Claim 6, the author proved k ≤ 7. After that
the author proved that k = 2, 3, 4, 5, 6 are all impossible. During the course
of the proofs the author supposed that U1 = {v1, v2, v3, v4}, S = {v5, v6}, and
U2 = U\(U1 ∪ S).

We point that the author mainly has four flaws in the proof:

Flaw 1. The proof of Claim 4 is not rigorous.

In order to offer a rigorous proof of Claim 4, firstly we prove another claim:

Claim 4.1. Suppose Ci and Cj are two 4-cycles in F . If {vi1u1, vi2u2, vi3u3} is
a 3-matching from U1 to Ci and {u′

1vj1 , u
′
2vj2 , u

′
3vj3} is a 3-matching from Cj

to U2), then there does not exist a 3-matching from {u1, u2, u3} to {u′
1, u

′
2, u

′
3}.

Proof. Without loss of generality suppose that i3 > i2 > i1 and j1 > j2 > j3.
Assume that there exists a 3-matching from {u1, u2, u3} to {u′

1, u
′
2, u

′
3}.

(1) If u3u
′
3 is in the matching, we extend Ci and Cj by (vi3u3u

′
3vj3 . . . vi3),

(vi2u2u
′
2vj2vi2) and (vi1u1u

′
1vj1vi1) (if u1u

′
1 is in the matching), or by (vi3u3u

′
3vj3 . . . vi3),

(vi2u2u
′
1vj1vi2) and (vi1u1u

′
2vj2vi1) (if u1u

′
2 is in the matching);

(2) If u3u
′
2 is in the matching, we extend Ci and Cj by (vi3u3u

′
2vj2vi3),

(vi2u2u
′
3vj3vi2), and (vi1u1u

′
1vj1vi1) (if u1u

′
1 is in the matching), or by (vi3u3u

′
2vj2vi3),

(vi2u2u
′
1vj1vi2), and (vi1u1u

′
3vj3vi1) (if u1u

′
3 is in the matching);

(3) If u3u
′
1 is in the matching, we extend Ci and Cj by (vi3u3u

′
1vj1vi3),

(vi2u2u
′
3vj3vi2), and (vi1u1u

′
2vj2vi1) (if u1u

′
2 is in the matching), or by (vi3u3u

′
1vj1vi3),

(vi2u2u
′
2vj2vi2), and (vi1u1u

′
3vj3vi1) (if u1c3 is in the matching).

Now we are ready to offer the proof of Claim 4.

Proof. Let Ci be (xyztx) and Cj be (x′y′z′t′x′) respectively. Because d+(U1, Ci) ≥
13 and d+(Cj , U2) ≥ 13, by Claim 2 and Claim 3 there exists one 3-matching
from U1 to Ci, and one from Cj to U2. Suppose they are {vi1x, vi2y, vi3z} and
{x′vj1 , y

′vj2 , z
′vj3} without loss of generality.

Assume that d+(Ci, Cj) ≥ 13. As d+({t}, Cj) ≤ 4, we have d+({x, y, z}, Cj) ≥
9. We consider three sub-cases:
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(1) At least two of x, y, z have 4 arcs to Cj . Without loss of generality, we
suppose that d+(x,Cj) = 4, d+(y, Cj) = 4. Since d+({x, y, z}, Cj) ≥ 9, we have
d+(z, Cj) ≥ 1. If z dominates at least one vertex in {x′, y′, z′}, then there exists
a 3-matching from {x, y, z} to {x′, y′, z′}. This contradicts Claim 4.1. If z does
not dominate anyone of {x′, y′, z′}, then z → t′. In this case we can construct
an “almost” 3-matching {xy′, yz′, zt′x′} from {x, y, z} to {x′, y′, z′}. This can
cause a contradiction in the same way as the proof of Claim 4.1;

(2) Exactly one of x, y, z has 4 arcs to Cj . Without loss of generality we
assume that d+(x,Cj) = 4, d+(y, Cj) = 3, and d+(z, Cj) ≥ 2. As a result, z

dominates at least one vertex in {x′, y′, z′}. Suppose z → z′. y dominates at
least one vertex in {x′, y′}. Suppose y → y′. At last, we have x → x′. Hence
we have a 3-matching from Ci to Cj , which contradicts Claim 4.1;

(3) All of x, y, z have at most 3 arcs to Cj . In this case we have d+(x,Cj) =

d+(y, Cj) = d+(z, Cj) = 3, and thus d+(t, Cj) = 4. Hence, x dominates at least
one vertex in {x′, y′, z′}. Suppose x → x′. y dominates at least one vertex in
{y′, z′}. Suppose y → y′. At last, we have t → z′, which means that there exists
an “almost” 3-matching {xx′, yy′, ztz′} from {x, y, z} to {x′, y′, z′}. This can
cause a contradiction in the same way as the proof of Claim 4.1.

Flaw 2. There are four typos in the proof of Claim 6.
(1) In sub-case (1), third paragraph, sixth row, “C = (v3uj1 . . . uj2uk2

v3)”
should be “(v3uj1 . . . uj2uk2v3);”

(2) In sub-case (2), third paragraph, sixth row, “B = (v3uj2 . . . uj1uk1)”
should be “(v3uj2 . . . uj1uk1

v3);”
(3) In sub-case (3), third paragraph, third row, “(v1uj3 . . . u7uk3

v1)” should
be “(v1uj3 . . . u7uk1v1);”

(4) In sub-case (3), third paragraph, fifth row, “(v1uj3 . . . u7uk3v1)” should
be “(v1uj3 . . . u7uk1

v1).”

Flaw 3. The proof of “k = 4 is impossible” is not rigorous.

Proof. When k = 4, we have δ+(T ) ≥ 11, and there are three cycles in F . On
account of d+(u1,F) ≥ 10 and d+(u2,F) ≥ 9, there exists a cycle C in F such
that d+(U1, C) ≥ 7. Let C be (xyzt). Without loss of generality, we suppose
x → y, y → z, t, z → t, x and t → x.

(1) d+(v1, C) = 4, d+(v2, C) ≥ 3. Obviously at most one vertex in C is not
dominated by v2. There are four sub-cases:
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Firstly, v2 → {x, y, z}. We will have d+(x,U2) ≥ 2, d+(t, U2) ≥ 1. There
exist arcs from x to U2 xvi, xvj , (i < j) and an arc from t to U2 tvl. Therefore,
C can be extended by: (a) (v2ytvlv2) and (v1zxvjv1) (j ̸= l), (b) (v2zxviv2)

and (v1ytvlv1) (j = l).
Secondly, v2 → {x, y, t}. We will have d+(x,U2) ≥ 2, d+(t, U2) ≥ 2. There

exist arcs from x to U2 xvi, xvj , (i < j) and arcs from t to U2 tvl, tvm, (l < m).
Therefore, C can be extended by: (a) (v2ytvlv2) and (v1zxvjv1) (j ̸= l), (b)
(v2xvj . . . v2) and (v1ytvmv1) (j = l).

Thirdly, v2 → {y, z, t}. We will have d+(x,U2) ≥ 1, d+(t, U2) ≥ 2. There
exists an arc x to U2 xvj and arcs from t to U2 tvl, t, vm, (l < m). Therefore, C
can be extended by: (a) (v2ytvlv2) and (v1zxvjv1) (j ̸= l), (b) (v2zxvjv2) and
(v1ytvmv1) (j = l).

Fourthly, v2 → {x, z, t}. We will have d+(x,U2) ≥ 2, d+(t, U2) ≥ 2. There
exist arcs from x to U2 xvi, x, vj , (i < j) and arcs from t to U2 tvl, tvm, (l < m).
Therefore, C can be extended by: (a) (v2zxviv2) and (v1ytvmv1) (m ̸= i), (b)
(v2zxvjv2) and (v1ytvmv1) (m = i).

(2) d+(v1, C) ≥ 3, d+(v2, C) = 4. We can exchange the role of v1 and v2

above and get a proof.
Consequently, we can extend C in all cases, which poses a contradiction.

Flaw 4. The proof of “k = 3 is impossible” is not rigorous.

Proof. When k = 3, we have δ+(T ) ≥ 8, and there are two cycles in F . On
account of d+(u1,F) ≥ 7 and d+(u2,F) ≥ 6, there exists a cycle C in F such
that d+(U1, C) ≥ 7. Hence, at most one vertex in C is not dominated by one
vertex in U1. Let C be (xyzt). Without loss of generality, we suppose x → y,
y → z, t, z → t, x and t → x.

It is easy to see that d+(x,U2) ≥ 2 and d+(t, U2) ≥ 2. Let one out-neighbor
of x in U2 be vi. Let one out-neighbor of t in U2 different from vi be vj . Without
loss of generality, we suppose v1 → y and v2 → z. Then two 4-cycles (v1ytvjv1)

and (v2zxviv2) can extend C, which poses a contradiction.
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