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Abstract. We construct an explicit Cartan–Dieudonné decomposition for orthog-
onal group elements of binary quadratic forms over non-archimedean local fields
of characteristic zero, expressing each group element as a product of reflections
defined by vectors. A key feature of our construction is its stability: we establish
quantitative control on how the reflection matrices vary under small perturbations
of the underlying vectors. Using this decomposition, we establish an effective result
for the equivalence of binary quadratic forms over number fields. Specifically, let
K be a number field and S a finite set of non-archimedean places of K. Given two
K-equivalent binary quadratic forms integrally equivalent at every prime in S, we
provide an explicit search bound for finding a K-equivalence that are integral at
all primes in S.

1. Introduction

The study of quadratic forms has played a central role in number theory since
the foundational work of Gauss, Minkowski, and Siegel. A key problem in this area
is determining when two quadratic forms are equivalent over a given ring or field
and, further, whether such an equivalence can be constructed effectively. While the
theory over local and global fields is well understood in principle, explicit algorithmic
results, particularly those that unify local and global constraints, remain an active
area of research.

A fundamental tool in the study of quadratic forms is the Cartan–Dieudonné
theorem, which provides a structural decomposition of orthogonal transformations.
Classically, this theorem states that every element of the orthogonal group of a non-
degenerate quadratic form over a field of characteristic not equal to 2 can be written
as a product of reflections. This decomposition not only illuminates the algebraic
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structure of the orthogonal group but also serves as a powerful computational device,
reducing questions about general isometries to simpler questions about reflections.
In this paper, we refine the Cartan–Dieudonné decomposition for special orthogonal
groups of binary quadratic forms over non-archimedean local fields of characteristic
zero, showing that each group element can be expressed as a product of a pair of
reflections with respect to vectors satisfying specific stable properties. This local
result is particularly suited for applications in number theory, where control over the
analytic properties of the reflecting vectors is essential.

Let us fix the following notation for our main result. Let K be a number field of
degree r with ring of integers O, and let p be a nonzero prime ideal of O, lying over
a rational prime p. Denote by Kp the completion of K at p, Op the valuation ring
of Kp, π a fixed uniformizer of Op, and | · |p the normalized absolute value on Kp

satisfying |π|p = q−1, where q = #(Op/πOp) is the cardinality of the residue field.
Let e be the ramification index of p over the rational prime p, so that |p|p = q−e.

For a quadratic form Q on a vector space V over Kp, we write OQ(Kp) for the
orthogonal group consisting all linear automorphs preserving Q, that is,

OQ(Kp) := {g ∈ GL(V ) : Q(gv) = Q(v) for all v ∈ V }.

The special orthogonal group is defined by

O+
Q(Kp) := {g ∈ OQ(Kp) : det(g) = 1},

as a subgroup of OQ(Kp) with index 2. Let BQ be the bilinear form associated with
Q. For a non-isotropic vector v, the reflection in the direction of v is the map

σv(x) := x − 2BQ(x, v)
Q(v) v, x ∈ V. (1.1)

To state our main result on stability, we also define the p-adic sup-norm of vector
x = (x1, . . . , xn)t ∈ (Kp)n and matrix M = (mij) ∈ Matn(Kp) by

∥x∥p := max
1≤i≤n

|xi|p, and ∥M∥p := max
1≤i,j≤n

|mij|p.

Theorem 1.1. Let λ ∈ Kp be such that |λ|p ∈ {1, q}, and define A = diag(1, λ).
Then for any matrix S ∈ O+

A(Kp), there exist vectors α, ξ ∈ (Kp)2 satisfying
(a) The p-adic sup-norms ∥α∥p = ∥ξ∥p = 1.
(b) The matrix S can be decomposed into reflections S = σασξ.
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(c) For any u, v ∈ (Kp)2 such that ∥α − u∥p < |4|pq−2e−2 and ∥ξ − v∥p <

|4|pq−2e−2∥S∥−2
p , we have the bound

∥S − σuσv∥p ≤
∣∣∣∣∣18
∣∣∣∣∣
p

∥S∥4
pq

4e+4 max{∥α − u∥p, ∥ξ − v∥p}. (1.2)

Notice that Equation (1.2) expresses a precise stability property: if the reflecting
vectors α, ξ are perturbed slightly to nearby vectors u, v, then the corresponding
product of reflections σuσv remains close to S = σασξ, with the deviation bounded
explicitly in terms of the perturbation size.

We also remark that our proof yields stronger results than stated. In fact, we
obtain explicit formulas for the vectors α and ξ appearing in the construction. As
these formulas require additional notation, we present here a simplified version of
our theorem and refer to Section 5 for complete details.

While our main theorem is formulated for diagonal quadratic forms, the results
extend naturally to general binary quadratic forms. By argument identical with
Lemma 6.1, any non-singular symmetric 2 × 2 matrix B over Kp can be expressed as

B = k P tAP

for some k ∈ K×
p , P ∈ GL2(Kp), and A = diag(1, λ). The conjugation relation

P −1O+
A(Kp)P = O+

B(Kp)

then allows us to transfer our results from diagonal to general forms.
There has been considerable interest in obtaining effective versions of the Cartan–

Dieudonné theorem. Fukshansky [Fuk07] showed that every isometry of a regular
bilinear space over a number field is a product of reflections defined by vectors of
bounded height. Over the fields of real and complex numbers, the problem of a
constructive decomposition has been studied in, for instance, [Uhl01, AGARA06,
Ful11].

The technical difficulty over local fields is distinct. Over number fields, one can use
the product formula to study Q(v)σv instead of σv itself when estimating the height,
as in [Fuk07, Lem. 5.1]. Over local fields, however, the term Q(v) remains in the
denominator, as Equation (1.1) shows. Thus, we require a lower bound for |Q(v)| to
control ∥σv∥. In this paper, we obtain such bounds using explicit parametrizations
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for isometries of binary quadratic forms. This approach, unfortunately, presents
significant obstacles to generalization in higher dimensions.

Theorem 1.1 has an interesting application. Conway and Sloane posed the follow-
ing question [CS99, Page. 402, Question (G4)]:

(G4) “If two quadratic forms are equivalent over Zp for every prime p

and also equivalent over R, find an explicit rational equivalence whose
denominator is prime to any given number.”

This problem is first resolved by Siegel using the Cayley transformation in [Sie41],
and [CGL21] clarified implicit steps in Siegel’s argument by exhibiting the effective
process of finding such equivalence. O’Meara in [O’M63, 101:7] gave an existential
proof, generalizing the result to arbitrary number fields and their completions based
on the weak approximation property on the special orthogonal group. Theorem 1.1
makes O’Meara’s approach effective, therefore we can extend the result of [CGL21]
to number fields, though only in dimension 2. The precise statement is given below,
continuing with the notation of Theorem 1.1.

Theorem 1.2. Let | · |p1, ..., | · |ps be finitely many distinct non-Archimedean ab-
solute values on K. Let B, C ∈ GL2(K) ∩ Sym2(K) be symmetric matrices that
are equivalent over K via τ0 ∈ GL2(K), and also equivalent over Op1 , ..., Ops. Let
P ∈ GL2(K) be the matrix obtained by Lemma 6.1. Let {b1, ..., br} be a Z-basis of
O. Define constants

ϵ = min
1≤i≤s

{
|8 det(P )5|pi

∥τ−1
0 ∥4

pi
∥τ0∥pi

∥P∥10
pi

q4ei+4
i

}

and

MK =
r∑

j=1
H(bj), ℓi = ⌈logN(pi)(1/ϵ)⌉ + 1

for i ∈ {1, 2, ..., s}. Then there exists integral vectors u, v ∈ O2 with bounded height

H(u), H(v) < rMK

s∏
i=1

N(pi)ℓi ,

such that the matrix τ0PσuσvP −1 ∈ GL2(K ∩ Opi
) for i ∈ {1, 2, ..., s}, and B, C are

equivalent via τ0PσuσvP −1.
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The paper is organized as follows. In Section 2, we recall basic facts about abso-
lute values on number fields and establish notation. Section 3 develops the theory of
automorphs for diagonal binary quadratic forms, with particular attention to their
decomposition into products of reflections. Section 4 proves an effective weak ap-
proximation result that allows us to construct global solutions with controlled height.
Section 5 formulates a constructive Cartan–Dieudonné decomposition, which consti-
tutes the main result of this paper. Finally, in Section 6 we present an application
of this result, giving an effective procedure for finding an equivalence between two
globally equivalent forms that are locally equivalent at a finite set of places.

2. Preliminaries

We begin with some foundational materials. A classical result of Ostrowski states
that, up to equivalence, every non-trivial absolute value on Q is either the real
absolute value or the p-adic absolute value of some prime p. Let K be a number field
with ring of integers O. Absolute values on K extend those on Q in two distinct
ways.

First, for each (real or complex) embedding σ : K ↪→ C, we obtain an Archimedean
absolute value on K by setting |x|σ = |σ(x)|, where the right-hand-side denotes the
usual absolute value on C.

Second, fix a rational prime p. The ideal (p) ⊆ Z extends to an ideal in O, which
factors as

(p)O =
m∏

i=1
pei

i ,

where the pi’s are distinct prime ideal in O, and the ei are their ramification indices.
Each pi gives rise to a discrete valuation vpi

: K× → Z defined as follows: for
x = a/b with a, b ∈ O, set vpi

(x) = vpi
(a) − vpi

(b), where vpi
= n if a ∈ pn\pn+1, and

similarly for b. This valuation is well-defined because O is a Dedekind domain. The
corresponding non-Archimedean absolute value on K is given by

|x|pi
=

 p−vpi (x)fi , if x ̸= 0,

0, if x = 0,

where fi = [O/pi : Fp] is the inertia degree. This convention follows standard sources
(see, e.g., [Neu99, Chapter. II, §5]). When the choice of pi is clear from the context,
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we may write q = pfi , so the formula simplifies to |x|p = q−vp(x). Another frequently
used immediate consequence is the ramification index ei is equal to vpi

(p).
Absolute values on K arise from one of the constructions above. We denote the

set of all absolute values on K by M(K). For v ∈ M(K), write v|∞ if v arises from
an embedding into C, and write v|p for some prime number p if v extends the p-adic
absolute value.

For certain classes of elements in K×
p , square roots can be defined and distinguished

via binomial expansion. The following result ensures the validity of such a definition.

Proposition 2.1. Let K be a number field with ring of integers O, and let p ⊆ O
be a non-zero prime ideal dividing (p). Let e be the ramification index of p, and let
Kp and Op be its completion and its valuation ring, respectively. Then:

(a) If p > 2, the series ∑∞
n=0

(
1/2
n

)
xn converges in Kp for all x ∈ peOp.

(b) If p = 2, the series converges for all x ∈ p2e+1Op.
Moreover, the limit defines an element whose square is 1 + x; that is:( ∞∑

n=0

(
1/2
n

)
xn

)2

= 1 + x.

Proof. To show convergence,we estimate the terms |
(

1/2
n

)
xn|p as n → ∞. For sim-

plicity, we write pfi = q. When p|(p) for prime p > 2, we know∣∣∣∣∣
(

1/2
n

)∣∣∣∣∣
p

=
∣∣∣∣∣1/2(1/2 − 1) · · · (1/2 − n + 1)

n!

∣∣∣∣∣
p

≤
∣∣∣∣∣ 1
n!

∣∣∣∣∣
p

= qvp(n!).

By Legendre’s formula,

vp(n!) =
∞∑

k=1
⌊ n

pk
⌋ ≤ n

p − 1 ,

so vp(n!) = evp(n!) ≤ en/(p − 1). Since x ∈ peOp, we have |x|p ≤ 1/qe. Hence,

lim
n→∞

∣∣∣∣∣
(

1/2
n

)
xn

∣∣∣∣∣
p

≤ lim
n→∞

q
en

p−1 −en = 0.

The case of p = 2 is slightly different. We know∣∣∣∣∣
(

1/2
n

)∣∣∣∣∣
p

=
∣∣∣∣∣1/2(1/2 − 1) · · · (1/2 − n + 1)

n!

∣∣∣∣∣
p

≤
∣∣∣∣∣ 1
n!

1
2n

∣∣∣∣∣
p

= qvp(n!)qvp(2)n.
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Legendre’s formula still gives vp(n!) = ev2(n!) ≤ en, and by e = vp(2) we have
|
(

1/2
n

)
|p ≤ qenqen = q2en. On the other hand, x ∈ p2e+1Op implies |x|p ≤ 1/q2e+1, and

thus

lim
n→∞

∣∣∣∣∣
(

1/2
n

)
xn

∣∣∣∣∣
p

= lim
n→∞

q2en−(2e−1)n = 0.

Therefore, the series converges in both cases.
Finally, the square root relation is easily verified through Vandermonde’s convo-

lution: (
(1 + x)1/2

)2
=
( ∞∑

n=0

(
1/2
n

)
xn

)( ∞∑
n=0

(
1/2
n

)
xn

)

=
∞∑

n=0

(
n∑

k=0

(
1/2
k

)(
1/2

n − k

))
xn =

∞∑
n=0

(
1
n

)
xn = 1 + x.

□

This justifies the following definition:

Definition 2.2. Let K, O, p, e, Kp, and Op be as in Proposition 2.1. For all
x ∈ peOp if p > 2, and all x ∈ p2e+1Op if p = 2, we define the p-adic square root of
1 + x by the convergent power series

(1 + x)1/2
p =

∞∑
n=0

(
1/2
n

)
xn.

The following three general facts will be used in the proof of Theorem 1.1, Lemma
5.3, and Theorem 1.2.

Lemma 2.3. Let K be a field of characteristic 0 with a non-Archimedean absolute
value | · |p. For matrices M, N ∈ Matn(Kp), the following two statements hold.

(a) ∥MN∥p ≤ ∥M∥p∥N∥p.
(b) If M is invertible, then ∥M−1∥p ≤ ∥M∥n−1

p /| det(M)|p.

Proof. Clear. □

Lemma 2.4. Let K be a number field with a non-Archimedean absolute value | · |p,
and let M lies in GL2(Kp). If det(M) = ±1, then ∥M∥p ≥ 1.
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Proof. To be explicit, write

M =
a b

c d

 .

Thus, we have |ad − bc|p = | det(M)|p = | ± 1|p = 1. The ultrametric triangle
inequality of the p-adic absolute value then yields

1 = |ad − bc|p ≤ max{|a|p|d|p, |b|p|c|p} ≤ ∥M∥2
p.

That implies ∥M∥p ≥ 1, as we want. □

Lemma 2.5. Let K be a field of characteristic 0 with a non-Archimedean absolute
value | · |p. Let Kp be the corresponding completion, and Op be its valuation ring. For
matrices M ∈ GLn(Kp) and N ∈ GLn(Op). If ∥M − N∥p < 1, then M ∈ GLn(Op).

Proof. Since ∥M − N∥p < 1, we have |mij − nij|p < 1 for all 1 ≤ i, j ≤ n. Since
N ∈ GLn(Op), we know |nij|p ≤ 1. Hence,

|mij|p = |nij + (mij − nij)|p ≤ max{|nij|p, |mij − nij|p} ≤ 1,

which implies mij ∈ Op for all i, j.
It remains to show that | det(M)|p = 1. This follows from the fact that the

determinant function det : GLn(Kp) → Kp is continuous under the matrix p-adic
sup norm. To show this, we observe

| det(M) − det(N)|p =
∣∣∣∣∣ ∑

σ∈Sn

n∏
i=1

(mi,σ(i) − ni,σ(i))
∣∣∣∣∣
p

≤ max
σ∈Sn

∣∣∣∣∣
n∏

i=1
(mi,σ(i) − ni,σ(i))

∣∣∣∣∣
p

≤
(

max
1≤i,j≤n

|mij − nij|p
)n

< 1.

Therefore, | det(M)|p = max{| det(N)|p, | det(M) − det(N)|p} = 1, implying that
M ∈ GLn(Op). □

3. Form of Automorphs

In this section, we revisit the notion of orthogonal groups of a quadratic form
introduced in Section 1, now working in coordinates and representing quadratic forms
by symmetric matrices. This equivalent formulation allows us to write down explicit
formulas for reflections in dimension 2.
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Definition 3.1. Let K be a field of characteristic 0, and let A ∈ GL2(K) be a
symmetric matrix. A matrix S ∈ GL2(K) is called an A-automorph over K, denoted
S ∈ OA(K), if StAS = A, where St denotes the transpose of S. The set of proper A-
automorphs over K, denoted O+

A(K), consists of those S ∈ OA(K) with det(S) = 1.

An important class of elements in OA(K)\O+
A(K) is given by reflections with

respect to A. When the matrix A has a particularly simple form, the reflections can
be explicitly expressed as follows.

Definition 3.2. Let K be a field of characteristic 0. Define a matrix A = diag(1, λ) ∈
GL2(K). For vector (m, n)t ∈ (K×)2, define the matrix σ(m,n)t ∈ GL2(K) by

σ(m,n)t = 1
m2 + λn2

−m2 + λn2 −2λmn

−2mn m2 − λn2

 .

We refer to σ(m,n)t as the reflection (with respect to A) along the direction of the
vector (m, n)t.

It follows immediately from Definition 3.2 that the reflection matrix σ(m,n)t is in-
variant under multiplication: for all k ∈ K×, we have σ(m,n)t = σk(m,n)t . Furthermore,
each reflection is involutive: σ2

(m,n)t = I for all non-zero vectors (m, n) ∈ (K×)2.
The elements of O+

A(K) can also be explicitly described.

Proposition 3.3. Let K be a field of characteristic 0. Define A = diag(1, λ) ∈
GL2(K). Then any element in O+

A(K) is of the form

S =
a −cλ

c a

 ,

for some c ∈ K such that 1−λc2 is a square in K, and a ∈ K satisfying a2 = 1−λc2.

Proof. Fix an arbitrary matrix S ∈ O+
A(K), and write S =

a b

c d

. Then the

condition StAS = A yields the system:


a2 + c2λ = 1, (3.1)

ab + λcd = 0, (3.2)

b2 + d2λ = λ. (3.3)
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Treating c as a parameter and solving the system, we find that Equation (3.1)
and (3.3) hold only if a2 = d2 = 1 − λc2 and b2 = c2λ2. To satisfy Equation (3.2),
we observe if a = d then b = −cλ and det(S) = 1; if a = −d then b = cλ and
det(S) = −1. Since we require S ∈ O+

A(K), only the first case a = d is possible. □

4. Effective Weak Approximation

A central tool for proving our main result is an effective version of the weak ap-
proximation theorem. This result enables us to find an integral element in a number
field K that approximates prescribed values at finitely many non-Archimedean ab-
solute values, using only a finite search. The finiteness of searching is guaranteed
by two key notions that measure the “size” of elements in K: height and norm. We
introduce these concepts below.

For an element x ∈ K, the height of x (with respect to K) is defined as

H(x) = max
v|∞

|x|v.

This notion naturally extends to vectors x = (x1, ..., xn)t ∈ Kn by H(x) = max1≤i≤n H(xi).
The field norm of x, denoted N(x) = NK/Q(x), is given by

N(x) =
∏

σ:K↪→C
σ(x).

With a slight abuse of notation, for non-zero ideal a of O we use N(a) = |O/a| to
denote the norm of a.

Let K be a number field with degree d, with integral basis x1, ..., xd. Then K

has d embeddings, among which r1 are real and 2r2 are complex. We enumerate
te embeddings as σ1, ..., σr1 , and τ1, ..., τ2r2 , where τi is the conjugate of τr2+i for
i ∈ {1, 2, ..., r2}. We can embed K into Rd by the Minkowski embedding

σ : K → Rd : x 7→
(
σ1(x), ..., σr1(x), ℜτ1(x), ..., ℜτr2(x), ℑτ1(x), ..., ℑτr2(x)

)
.

Under this embedding, OK becomes a full-rank lattice (i.e. a discrete, finitely gener-
ated abelian group) in Rd with Z-basis {σ(x1), ..., σ(xd)}. Any non-zero ideal a ⊆ OK

is likewise embedded as a full-rank sublattice of σ(OK), with index [σ(OK) : σ(a)] =
N(a). We now introduce a standard tool for producing bases of such sublattices.

Definition 4.1. A square matrix H ∈ Matn×n(Z) with det(H) ̸= 0 is in Hermite
normal form if:
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(1) The matrix H is upper triangular.
(2) The diagonal entries hii > 0 for all i ∈ {1, ..., d}.
(3) The off diagonal entries satisfy 0 ≤ hij < hii for all j ̸= i.

Lemma 4.2. Let Λ′ ⊆ Λ ⊆ Rd be full-rank lattices. For every column vector basis
matrix B ∈ GLd(R) of Λ, there exists a basis matrix B′ of Λ′ such that B′ = BH,
where H is a matrix in Hermite normal form.

Proof. Let B be a basis matrix of Λ, and B0 be any basis matrix of Λ′. Since Λ′ is a
sublattice of Λ, every element in Λ′ is a Z-linear combination of the column vectors
of B. Therefore, we can write B0 = BV for some integral matrix V with full rank.
Basic matrix theory gives the fact that every rational matrix with full rank can be
transformed into Hermite normal form by a finite sequence of elementary column
operations. Due to unimodularity of those operations, there exists a unimodular
matrix U such that H := V U is in Hermite normal form. It suffices to show that
BH = BV U = B0U is also a basis matrix of Λ′. To prove this claim, we observe that
for vectors y = B0Ux where x ∈ Rd, x is integral if and only if Ux is integral. But x

is integral means y is in the lattice generated by B0U , and Ux is integral means y is
in the lattice generated by B0. That implies B0 and B0U generates the same lattice,
completing the proof. □

Lemma 4.2 helps us to prove the next result, which can be seen as an effective
version of the Weak Approximation Theorem. A version of this result was first
established in [CGL21, Lem. 2.3] for Q and its completions Qp. Here we adapt their
method to general number fields, thereby obtaining the following generalization.

Lemma 4.3. Let K be a number field of degree r, and let O be its ring of integers.
Take {b1, ..., br} be a Z-basis of O. Define p1, ..., ps to be non-zero prime ideals of
O, each corresponding to a non-Archimedean absolute value | · |pi

on K. Fix a real
number 0 < ϵ ≤ 1, and suppose that for each pi, a number xi ∈ Opi

is given. Then
there exists z ∈ O such that for each 1 ≤ i ≤ s,

|z − xi|pi
< ϵ, and 0 ≤ H(z) < rMK

s∏
i=1

N(pi)ℓi ,

where
ℓi =

⌈
logN(pi)

(
1
ϵ

)⌉
+ 1, and MK =

r∑
i=1

H(bi).
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Proof. Since O is dense in Opi
, for each i we may find zi ∈ O such that |xi −zi|pi

< ϵ.
Define an ideal a of O by a = ∏s

i=1 p
ℓi
i . By the Chinese Remainder Theorem, there

exists a coset z0 + a of a such that for all z′ ∈ z0 + a, we have

z′ ≡ zi mod pℓi
i for all i.

This implies |z′ − zi|pi
≤ N(pi)−ℓi < ϵ, and so

|z′ − xi|pi
≤ max{|z′ − zi|pi

, |zi − xi|pi
} < ϵ,

as we want.
Next, the goal is to find one element in the coset z0 +a with bounded height. To do

this, we embed K into Rr by the Minkowski embedding σ. Let B = [σ(b1) σ(b2) ... σ(br)]
be the basis matrix of the full-rank lattice σ(O). By Lemma 4.2 there exists a ba-
sis B′ of σ(a) such that B′ = BH, where H = (hij) is in Hermite normal form.
Because det(B) = vol(Rr/σ(O)) and det(B′) = vol(Rr/σ(a)) = N(a)vol(Rr/σ(O)),
we conclude det(H) = N(a). Since H is an integral upper triangular matrix, we
have |hii| ≤ det(H) for 1 ≤ i ≤ r. Since off-diagonal entries in matrices of Hermite
normal form are strictly less than their diagonal entries, we further conclude that
|hij| ≤ det(H) for all 1 ≤ i, j ≤ r. Thus, if we write {b′

1, ..., b′
r} as the integral basis

of a generated by B′, we can bound the height of the b′
i’s by

H(b′
i) = H

(
r∑

j=1
hijbj

)
≤

r∑
j=1

|hij|H(bj) <
r∑

j=1
|hii|H(bj) ≤ MKN(a).

Since every coset of a must have one of its representative be mapped by σ into the
region

A =
{

r∑
i=1

aiσ(b′
i) : 0 ≤ ai < 1 for i = 1, ..., r

}
,

there exists z ∈ z0 + a such that σ(z) ∈ A. Thus

H(z) <
r∑

i=1
H(b′

i) ≤ rMKN(a),

as we want. □

It is worth noting that the bound H(z) < rMK
∏s

i=1 N(pi)ℓi is indeed an effective
search bound for z ∈ O. That is, there are only finitely many elements in O whose
height is bounded above by a fixed finite constant. This assertion is formalized in
the following proposition.
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Proposition 4.4. Let K be a number field with ring of integers O. Let m be a pos-
itive real number. Then the set {x ∈ O : H(x) < m} is finite and can be determined
effectively.

This proposition is a special case of Northcott’s Theorem (see, e.g., [Zan09, Thm. 3.7]),
which asserts that the set of algebraic numbers of bounded degree and bounded log-
arithmic Weil height is finite. In our case, since the elements of O are algebraic
integers of fixed degree, it suffices to note that for any x ∈ O, the logarithmic Weil
height h(x) satisfies

h(x) ≤ log H(x),

where H(x) is the Archimedean height defined above. Therefore, the finiteness of the
set {x ∈ O : H(x) < m} follows immediately from Northcott’s Theorem. For the
effectiveness of Northcott’s Theorem, see, for example, [Ser97, Chapter. 2, § 5].

5. Proof fo Theorem 1.1

To prove Theorem 1.1, we will first establish three preparatory lemmas. The
proposition will then follow as a consequence.

Lemma 5.1. Let λ, d ∈ Kp be such that |d|p = 1/qe+1 and |λ|p ∈ {1, q}. Define
A = diag(1, λ), and let a, c ∈ Kp satisfy a2 + λc2 = 1. Consider the matrix

S =
a −cλ

c a

 ∈ O+
A(Kp).

Then:
(a) The element 1−λd2 is a square element in Kp, and its square root (1−λd2)1/2

is well-defined.
(b) Define vectors β, η ∈ (Kp)2 as

β =
−1 + (1 − λd2)1/2

d

 , η =
−1 + a(1 − λd2)1/2 + λcd

da − c(1 − λd2)1/2

 .

Then S can be written as the product of two reflections: S = σβση.

Proof.



14 ZE FAN AND HAN LI

(a) Since |d|p = 1/qe+1 and |λ|p ≤ q, we have |λd2|p ≤ 1/q2e+1, so λd2 ∈ p2e+1Op.
By Definition 2.2, the binomial series for (1 − λd2)1/2 converges in Kp, which
confirms that 1 − λd2 is indeed a square in Kp.

(b) Using the general formula for reflections from Definition 3.2, the reflection
matrices are computed as:

σβ =
(1 − λd2)1/2 dλ

d −(1 − λd2)1/2

 , ση =
a(1 − λd2)1/2 + λcd λda − λc(1 − λd2)1/2

da − c(1 − λd2)1/2 −a(1 − λd2)1/2 + λcd

 .

A direct matrix multiplication verifies S = σβση.
□

Lemma 5.2. Let λ ∈ Kp satisfy |λ|p = q, and let a, c ∈ Kp be such that a2 +λc2 = 1.
Define the matrix

S =
a −cλ

c a

 .

Then for any d ∈ Kp, any ξ ∈ {kη : k ∈ Kp, ∥kη∥p = 1}, where η ∈ (Kp)2 was
defined in Lemma 5.1 (b), and any γ ∈ (Kp)2 with ∥ξ − γ∥p < 1, we have

∥σξ − σγ∥p ≤
∣∣∣∣∣18
∣∣∣∣∣
p

∥S∥4
pq

4e+4∥ξ − γ∥p.

Proof. For the sake of clarity, we write ξ = (ξ1, ξ2)t = k(η1, η2)t and γ = (γ1, γ2)t.
For any matrix M denote by M(i, j) its (i, j)-entry. The condition ∥ξ − γ∥p < 1
gives us ∥γ∥p = ∥ξ∥p = 1, because

1 = ∥ξ∥p = ∥γ + (ξ − γ)∥p ≤ max{∥γ∥p, ∥ξ − γ∥p}

implies ∥γ∥p ≥ 1, and

∥γ∥p = ∥ξ + (γ − ξ)∥p ≤ max{∥ξ∥p, ∥γ − ξ∥p} = 1

implies ∥γ∥p ≤ 1.
Since we equip the matrices with sup-norm, we estimate ∥σξ − σγ∥p by computing

each entry’s p-absolute value. Using the general formula for reflections in Definition
3.2, we have

σξ(1, 1) − σγ(1, 1) = 2λ(ξ2γ1 + ξ1γ2)(ξ2γ1 − ξ1γ2)
(ξ2

1 + λξ2
2)(γ2

1 + λγ2
2) .
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Because ∥ξ∥p = ∥γ∥p = 1, the numerator satisfies |ξ2γ1+ξ1γ2|p ≤ max{|ξ2γ1|p, |ξ1γ2|p} ≤
1, and |ξ2γ1−ξ1γ2|p = |ξ2(γ1−ξ1)+ξ1(ξ2−γ2)|p ≤ max{|ξ2|p, |ξ1|p}∥ξ−γ∥p ≤ ∥ξ−γ∥p.
Hence we know

|σξ(1, 1) − σγ(1, 1)|p ≤ |2λ|p∥ξ − γ∥p

|ξ2
1 + λξ2

2 |p|γ2
1 + λγ2

2 |p
,

To bound this expression, we seek a lower bound for the denominator. Because
|λ|p = q, we know vp(ξ2

1) and vp(λξ2
2) differ in parity. Thus |ξ2

1 |p ̸= |λξ2
2 |p, implying

|ξ2
1 + λξ2

2 |p = max{|ξ2
1 |p, |λξ2

2 |p} ≥ 1. Similar argument shows |γ2
1 + λγ2

2 |p ≥ 1.
Therefore, we obtain |σξ(1, 1) − σγ(1, 1)|p ≤ q|2|p∥ξ − γ∥p.

We have identical bound for the (2, 1)-entry:

|σξ(2, 1) − σγ(2, 1)|p =
∣∣∣∣∣2(γ2ξ1 − γ1ξ2)(ξ1γ1 − λξ2γ2)

(ξ2
1 + λξ2

2)(γ2
1 + λγ2

2)

∣∣∣∣∣
p

≤ q|2|p∥ξ − γ∥p.

Moreover, from the general formula of reflection in Definition 3.2, we observe σξ(1, 2)−
σγ(1, 2) = λ(σξ(2, 1) − σγ(2, 1)) and σξ(2, 2) − σγ(2, 2) = −(σξ(1, 1) − σγ(1, 1)). So
we finally conclude

∥σξ − σγ∥p = |σξ(1, 2) − σγ(1, 2)|p ≤ q2|2|p∥ξ − γ∥p.

□

Lemma 5.3. Let λ ∈ Kp satisfy |λ|p = 1. Let a, c ∈ Kp and S ∈ GL2(Kp) be
as in Lemma 5.2. Then there exists d ∈ Kp with |d|p = 1/qe+1, such that for any
ξ ∈ {kη : k ∈ Kp, ∥kη∥p = 1} where η ∈ (Kp)2 was defined in Lemma 5.1 (b), and
any γ ∈ (Kp)2 with ∥ξ − γ∥p < |4|pq−2e−2∥S∥−2

p , we have

∥σξ − σγ∥p ≤
∣∣∣∣∣18
∣∣∣∣∣
p

∥S∥4
pq

4e+4∥ξ − γ∥p.

Proof. By lemma 2.4, det(S) = 1 implies ∥S∥p ≥ 1. Thus the norm of ξ − γ can be
bounded by

∥ξ − γ∥p < |4|pq−2e−2∥S∥−2
p < 1.

By similar argument in Lemma 5.2, we still have ∥γ∥p = ∥ξ∥p = 1.
Continuing the notation from the proof of Lemma 5.2, we write ξ = (ξ1, ξ2)t =

k(η1, η2)t and γ = (γ1, γ2)t. We also let M(i, j) denote the (i, j)-entry of the matrix
M . As before, we bound the sup-norm of σξ − σγ by formulating upper bounds for
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each entry one by one. Using the general formula for reflections in Definition 3.2, we
have

|σξ(1, 1) − σγ(1, 1)|p =
∣∣∣∣∣2λ(ξ2γ1 + ξ1γ2)(ξ2γ1 − ξ1γ2)

(ξ2
1 + λξ2

2)(γ2
1 + λγ2

2)

∣∣∣∣∣
p

≤ |2λ|p∥ξ − γ∥p

|ξ2
1 + λξ2

2 |p|γ2
1 + λγ2

2 |p
.

Thus, we seek a lower bound for the denominator. Using formula of η in Lemma 5.1
and the fact ξ = kη, a direct computation shows ξ2

1 + λξ2
2 = −2kξ1 = −2k2η1. So we

will bound |ξ2
1 + λξ2

2 |p by obtaining lower bounds for |k|p and |η1|p separately.
To bound |k|p, we first claim that ∥η∥p ≤ ∥S∥p. This follows by showing that each

of the five terms appearing in η1 and η2 has p-adic absolute value no greater than
some entry of S. The term | − 1|p ≤ ∥S∥p because

1 = |a2 + λc2|p ≤ max{|a2|p, |λc2|p},

implying that either |a|p ≥ 1 or |λc|p ≥ 1. The term |a(1 − λd2)1/2|p = |a|p, because
|d|p = 1/qe+1 implies |(1−λd2)1/2|p = 1. The term |λcd|p is less than |−cλ|p, |da|p less
than |a|p, and |c(1 − λd2)1/2|p no greater than |c|p. So indeed we have ∥η∥p ≤ ∥S∥p.
Together with our assumption ∥kη∥p = 1, we deduce ∥kS∥p ≥ 1, so the bound of |k|p
is

|k|p ≥ 1
∥S∥p

.

Now the main task falls on analyzing |η1|p. Write |c|p = qm for m ∈ Z. As long as
m ̸= −e − 1, d can be any element with absolute value |d|p = 1/qe+1. Therefore we
may fix a uniformizer π of Kp, and take d = πe+1. In the case of m = −e − 1, d will
either be c or −c, and the sign will be chosen later. We now determine the values of
|η1|p by performing a case analysis on the possible values of m.

When m > 0, then |a|p = qm and |(1 − λd2)1/2|p = 1. Therefore,

|η1|p = | − 1 + a(1 − λd2)1/2 + λcd|p = max{1, qm, qm−e−1} = qm.

When m = −e−1, we know |λc2|p = 1/q2e+2 is small enough to define the binomial
expansion for (1 − λc2)1/2 by the requirement of Definition 2.2. If a = (1 − λc2)1/2

we set d = −c, and |η1|p = | − 2λd2|p = |2|pq−2e−2; when a = −(1 − λc2)1/2 we set
d = c, and |η1|p = | − 2 + 2λd2|p = |2|p.

When −e ≤ m ≤ 0, the binomial expansion cannot be applied on a. However, if
we set g = −1 + λcd and h = a(1 − λd2)1/2, we immediately observe (g + h)(g − h) =
λ(c − d)2 ̸= 0. Since |c|p = qm > q−e−1 = |d|p, we know |c − d|p = |c|p = qm. Since
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|(1 − λd2)1/2|p = 1 and |a|p =
√

max{|1|p, | − λc2|p} ≤ 1, g − h can also be bounded
by

|g − h|p ≤ max{| − 1|p, |λcd|p, |a(1 − λd2)1/2|p} = 1.

Thus we can estimate the norm of η1 = g + h by

|η1|p = |g + h|p = |λ(c − d)2|p
|g − h|p

= q2m

|g − h|p
≥ q2m.

When m < −e−1, we use binomial expansion on both (1−λd2)1/2 and (1−λc2)1/2.
In the binomial series, lower-order terms has strictly larger p-adic absolute values
than the higher-order terms. Hence, by the ultrametric triangle inequality we can
ignore all higher-order terms when evaluating |η1|p. If a = (1 − λc2)1/2, then we have

| − 1 + a(1 − λd2)1/2|p =
∣∣∣∣∣− 1 +

∞∑
n=0

(
1/2
n

)
(−λc2)n

∞∑
n=0

(
1/2
n

)
(−λd2)n

∣∣∣∣∣
p

= | − 1/2λd2 − 1/2λc2|p = |1/2λd2|p = |1/2|pq−2e−2.

If a = −(1 − λc2)1/2, then

| − 1 + a(1 − λd2)1/2|p = | − 2 + 1/2λd2 + 1/2λc2|p = |2|p ≥ q−e.

In either case we have

| − 1 + a(1 − λd2)1/2|p ≥ q−2e−2 > |λcd|p.

Hence we know

|η1|p = | − 1 + a(1 − λd2)1/2 + λcd|p ≥ max{|1/2|pq−2e−2, |λcd|p} = |1/2|pq−2e−2.

To sum up, we have

|η1|p ≥



qm m > 0,

q2m −e ≤ m ≤ 0,

|2|pq−2e−2 m = −e − 1,

|1/2|pq−2e−2 m < −e − 1.
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Therefore, we finally obtain

|ξ2
1 + λξ2

2 |p = | − 2k2η1|p ≥



|2|pqm/∥S∥2
p, m > 0,

|2|pq2m/∥S∥2
p, −e ≤ m ≤ 0,

|4|pq−2e−2/∥S∥2
p, m = −e − 1,

q−2e−2/∥S∥2
p, m < −e − 1.

A uniform bound is therefore

|ξ2
1 + λξ2

2 |p ≥ |4|pq−2e−2

∥S∥2
p

.

To obtain a lower bound for |γ2
1 + λγ2

2 |p, we observe

|γ2
1 + λγ2

2 |p =
∣∣∣(ξ1 + (γ1 − ξ1)

)2
+ λ

(
ξ2 + (γ2 − ξ2)

)2∣∣∣
p

= |(ξ2
1 + λξ2

2) + (γ1 − ξ1)2 + λ(γ2 − ξ2)2 + 2ξ1(γ1 − ξ1) + 2λξ2(γ2 − ξ2)|p.

Because of ∥ξ − γ∥p < |4|pq−2e−2∥S∥−2
p , all correction terms have norm strictly less

than the leading term ξ2
1 + λξ2

2 . So

|γ2
1 + λγ2

2 |p = |ξ2
1 + λξ2

2 |p ≥ |4|pq−2e−2

∥S∥2
p

.

Therefore, we can finally estimate

|σξ(1, 1) − σγ(1, 1)|p =
∣∣∣∣∣2λ(ξ2γ1 + ξ1γ2)(ξ2γ1 − ξ1γ2)

(ξ2
1 + λξ2

2)(γ2
1 + λγ2

2)

∣∣∣∣∣
p

≤ ∥ξ − γ∥p

|8|p∥S∥−4
p q−4e−4 ,

and

|σξ(2, 1) − σγ(2, 1)|p =
∣∣∣∣∣2(γ2ξ1 − γ1ξ2)(ξ1γ1 − λξ2γ2)

(ξ2
1 + λξ2

2)(γ2
1 + λγ2

2)

∣∣∣∣∣
p

≤ ∥ξ − γ∥p

|8|p∥S∥−4
p q−4e−4 .

From the general formula of reflection in Definition 3.2, we observe σξ(1, 2)−σγ(1, 2) =
λ(σξ(2, 1) − σγ(2, 1)) and σξ(2, 2) − σγ(2, 2) = −(σξ(1, 1) − σγ(1, 1)). So the (1, 2)
and (2, 2)-entry yields the same bound for ∥σξ − σγ∥p, and we can finally conclude

∥σξ − σγ∥p ≤
∣∣∣∣∣18
∣∣∣∣∣
p

∥S∥4
pq

4e+4∥ξ − γ∥p.

□

With the preceding lemmas established, we are now in a position to complete the
proof of one of our main results, Theorem 1.1.
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Proof of Theorem 1.1. Let |λ|p ∈ {1, q}, and S ∈ O+
A(Kp) be arbitrary. By Proposi-

tion 3.3, S has the form described in Lemma 5.1. Applying Lemma 5.1, we may write
S = σασξ, where the vectors α and ξ has been normalized so that ∥α∥p = ∥ξ∥p = 1.

Now, let u, v ∈ (Kp)2 satisfy ∥α−u∥p < |4|pq−2e−2 and ∥ξ −v∥p < |4|pq−2e−2∥S∥−2
p .

The bound in the case |λ|p = q, as given by Lemma 5.2, is weaker than the bound
for |λ|p = 1 provided by Lemma 5.3. Therefore, we consistently use the bound from
Lemma 5.3 to ensure correctness. Specifically, Lemma 5.3 yields

∥σξ − σv∥p ≤
∣∣∣∣∣18
∣∣∣∣∣
p

∥S∥4
pq

4e+4∥ξ − v∥p,

and by choosing a = 1 and c = 0, it also implies

∥σα − σu∥p ≤
∣∣∣∣∣18
∣∣∣∣∣
p

q4e+4∥α − u∥p.

Therefore,

∥S − σuσv∥p = ∥σα(σξ − σv) + (σα − σu)σξ − (σα − σu)(σξ − σv)∥p

≤ max
{∣∣∣∣∣18

∣∣∣∣∣
p

∥S∥4
pq

4e+4∥σα∥p∥ξ − v∥p,

∣∣∣∣∣18
∣∣∣∣∣
p

q4e+4∥σξ∥p∥α − u∥p,∣∣∣∣∣ 1
64

∣∣∣∣∣
p

∥S∥4
pq

8e+8∥α − u∥p∥ξ − v∥p

}
.

Next, we know σβ = σα because scalar multiplication does not change the expression
of reflection matrix. Thus by the formula of σβ in Part (b) of Lemma 5.1, we have

∥σα∥p = max{(1 − λd2)1/2, d, dλ} = max
{

1,
1

qe+1 ,
1
qe

}
= 1.

Together with our assumption of ∥α − u∥p < |4|pq−2e−2 < 1 and the fact |1/8|p ≤
q3e < q4e+4, they imply that the third term in the maximum above is strictly smaller
than the first:∣∣∣∣∣ 1

64

∣∣∣∣∣
p

∥S∥4
pq

8e+8∥α − u∥p∥ξ − v∥p <

∣∣∣∣∣18
∣∣∣∣∣
p

∥S∥4
pq

4e+4∥α − u∥p∥ξ − v∥p

≤
∣∣∣∣∣18
∣∣∣∣∣
p

∥S∥4
pq

4e+4∥σα∥p∥ξ − v∥p.
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Finally, since reflection matrices are involutive (σα = σ−1
α ), Lemma 2.3implies

∥σξ∥p = ∥σαS∥p ≤ ∥σα∥p∥S∥p = ∥S∥p.

Combining all the bounds, we arrive at

∥S − σuσv∥p ≤ max
{∣∣∣∣∣18

∣∣∣∣∣
p

∥S∥4
pq

4e+4∥σα∥p∥ξ − v∥p,

∣∣∣∣∣18
∣∣∣∣∣
p

q4e+4∥σξ∥p∥α − u∥p

}

≤
∣∣∣∣∣18
∣∣∣∣∣
p

∥S∥4
pq

4e+4 max{∥α − u∥p, ∥ξ − v∥p}.

□

6. Proof of Theorem 1.2

From Theorem 1.1, we can derive a effective weak approximation for elements of
O+

A(K), aided by the following lemma.

Lemma 6.1. Let K be a number field, with B ∈ GL2(K) a symmetric matrix. Let
p1, . . . , ps be non-zero prime ideals of O, each with uniformizer |πi|pi

= 1/qi. Then
there exists a matrix P ∈ GL2(K) and scalar k ∈ K such that

kP tBP = diag(1, λ) := A,

where |λ|pi
∈ {1, qi} for all 1 ≤ i ≤ s.

Proof. Since every nonsingular symmetric bilinear form over a field of characteristic
̸= 2 is diagonalizable, we may assume that B is diagonal, and write B = diag(µ1, µ2).
By the weak approximation theorem, for each 1 ≤ i ≤ s there exists θi ∈ K such
that |θi − πi|pi

< 1/qi and |θi − 1|pj
< 1 for all j ̸= i. Therefore, θi serves as a

uniformizer for pi while taking trivial absolute value at all other primes pj. Define

k = µ−1
1 , κ =

s∏
i=1

θ
−⌈vpi (µ2)/2⌉
i , and P = diag(1, κ).

Then these choices satisfy the required condition. □

The weak approximation result can now be formulated as follows.

Proposition 6.2. Let K be a number field of degree r, and let B ∈ GL2(K) be
any symmetric matrix. Let p1, ..., ps be non-zero prime ideals of O, with ramification
indices ei and uniformizers πi satisfying |πi|pi

= 1/qi. Let P ∈ GL2(K) be the matrix
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obtained from Lemma 6.1. Pick Ti ∈ O+
B(Kpi

) for i ∈ {1, 2, ..., s}. Then, for any real
number

ϵ < min
1≤i≤s

{|4|pi
q−2ei−2

i ∥P −1TiP∥−2
pi

},

there exists a proper B-automorph

T ∈
{

PσuσvP −1
∣∣∣∣∣ 0 ≤ H(u), H(v) < rMK

s∏
i=1

N(pi)ℓi

}
⊆ O+

B(K),

where MK and ℓi are constants defined in Lemma 4.3, such that

∥T − Ti∥pi
<

∥P∥10
pi

|8 det(P )5|pi

∥Ti∥4
pi

q4ei+4
i ϵ

for all 1 ≤ i ≤ s.

Proof. For i ∈ {1, 2, ..., s}, we define Si = P −1TiP ∈ O+
A(Kpi

). By Lemma 6.1, there
exists a scalar k ∈ K such that

kP tBP = diag(1, λ) := A,

which implies that all the Si’s are proper A-automorphs. Hence, by Theorem 1.1,
we can decompose each Si as Si = σαi

σξi
, where ∥αi∥pi

= ∥ξi∥pi
= 1. By Lemma

4.3, we can find u, v ∈ O2 such that ∥αi − u∥pi
, ∥ξi − v∥pi

< ϵ and 0 ≤ H(u), H(v) <

rMK
∏s

i=1 N(pi)ℓi . Apply Theorem 1.1 again, we obtain

∥PσuσvP −1 − Ti∥pi
≤ ∥P∥pi

∥P −1∥pi
∥σuσv − Si∥pi

< ∥P∥pi
∥P −1∥pi

∣∣∣∣∣18
∣∣∣∣∣
pi

∥P −1TiP∥4
pi

q4ei+4
i ϵ

≤ ∥P∥5
pi

∥P −1∥5
pi

∣∣∣∣∣18
∣∣∣∣∣
pi

∥Ti∥4
pi

q4ei+4
i ϵ

≤
∥P∥10

pi

|8 det(P )5|pi

∥Ti∥4
pi

q4ei+4
i ϵ.

Taking T = PσuσvP −1, the proof is completed. □

The preparatory result obtained above now allow us to establish our second main
theorem, Theorem 1.2.
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Proof of Therorem 1.2. Since B and C are equivalent over Opi
, there exists τi ∈

GL2(Opi
) such that B = τ t

i Cτi for i ∈ {1, 2, ..., s}. Although the τi’s cannot be
written explicitly, their norm must be ∥τi∥pi

= 1, as they are invertible, and all of
their entries are in the valuation ring Opi

. We also know τ−1
0 τi ∈ OB(Kpi

). Write
them as Ti. If any Ti is not proper, then by [O’M63, 91:4], we can redefine Ti = TiRi

for some Ri ∈ OB(Kpi
)\O+

B(Kpi
) with ∥Ri∥pi

= 1. Hence, we may assume Ti ∈
O+

B(Kpi
) for all i ∈ {1, 2, ..., s}.

By Lemma 2.3, the norm of Ti can be bounded above by

∥Ti∥pi
= ∥τ−1

0 τi∥pi
≤ ∥τ−1

0 ∥pi
∥τi∥pi

= ∥τ−1
0 ∥pi

.

By Lemma 6.1, we can explicitly construct k ∈ K and P ∈ GL2(K) such that
kP tBP = diag(1, λ) := A. By Proposition 6.2, there exists a matrix T = PσuσvP −1 ∈
O+

A(K) and a constant ϵ0 > 0 such that, for each i ∈ {1, 2, ..., s} and every 0 < ϵ < ϵ0,

∥PσuσvP −1 − Ti∥pi
≤

∥P∥10
pi

|8 det(P )5|pi

∥Ti∥4
pi

q4ei+4
i ϵ ≤

∥τ−1
0 ∥4

pi
∥P∥10

pi
q4ei+4

i

|8 det(P )5|pi

· ϵ.

Now choose ϵ sufficiently small so that

∥PσuσvP −1 − Ti∥pi
<

1
∥τ0∥pi

.

This implies ∥τ0PσuσvP −1 − τ0Ti∥pi
< 1, where τ0Ti = τi ∈ GL2(Opi

) by definition.
Therefore, by Lemma 2.5, we conclude that τ0PσuσvP −1 ∈ GL2(K) ∩ GL2(Opi

) for
i ∈ {1, 2, ..., s}, as desired. □

Acknowledgment

Ze Fan would like to express his gratitude to Professor Wai Kiu Chan at Wesleyan
University for his guidance during an individual reading program in the summer
of 2024, through which he learned the valuation-theoretic background underlying
several arguments in this paper.

References
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[CS99] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, third ed.,
Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathe-
matical Sciences], vol. 290, Springer-Verlag, New York, 1999. MR 1662447

[Fuk07] L. Fukshansky, On effective Witt decomposition and the Cartan-Dieudonné theorem,
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