CONSTRUCTIVE AND STABLE CARTAN-DIEUDONNE AND
APPLICATIONS TO BINARY QUADRATIC FORMS OVER
NUMBER FIELDS

ZE FAN AND HAN LI

ABSTRACT. We construct an explicit Cartan—Dieudonné decomposition for orthog-
onal group elements of binary quadratic forms over non-archimedean local fields
of characteristic zero, expressing each group element as a product of reflections
defined by vectors. A key feature of our construction is its stability: we establish
quantitative control on how the reflection matrices vary under small perturbations
of the underlying vectors. Using this decomposition, we establish an effective result
for the equivalence of binary quadratic forms over number fields. Specifically, let
K be a number field and S a finite set of non-archimedean places of K. Given two
K-equivalent binary quadratic forms integrally equivalent at every prime in .S, we
provide an explicit search bound for finding a K-equivalence that are integral at
all primes in S.

1. INTRODUCTION

The study of quadratic forms has played a central role in number theory since
the foundational work of Gauss, Minkowski, and Siegel. A key problem in this area
is determining when two quadratic forms are equivalent over a given ring or field
and, further, whether such an equivalence can be constructed effectively. While the
theory over local and global fields is well understood in principle, explicit algorithmic
results, particularly those that unify local and global constraints, remain an active
area of research.

A fundamental tool in the study of quadratic forms is the Cartan—Dieudonné
theorem, which provides a structural decomposition of orthogonal transformations.
(Classically, this theorem states that every element of the orthogonal group of a non-
degenerate quadratic form over a field of characteristic not equal to 2 can be written

as a product of reflections. This decomposition not only illuminates the algebraic
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structure of the orthogonal group but also serves as a powerful computational device,
reducing questions about general isometries to simpler questions about reflections.
In this paper, we refine the Cartan—Dieudonné decomposition for special orthogonal
groups of binary quadratic forms over non-archimedean local fields of characteristic
zero, showing that each group element can be expressed as a product of a pair of
reflections with respect to vectors satisfying specific stable properties. This local
result is particularly suited for applications in number theory, where control over the
analytic properties of the reflecting vectors is essential.

Let us fix the following notation for our main result. Let K be a number field of
degree r with ring of integers O, and let p be a nonzero prime ideal of O, lying over
a rational prime p. Denote by K, the completion of K at p, O, the valuation ring
of K, 7 a fixed uniformizer of O,, and | - |, the normalized absolute value on K,
satisfying |7|, = ¢7!, where ¢ = #(0,/70,) is the cardinality of the residue field.
Let e be the ramification index of p over the rational prime p, so that |p|, = ¢ °.

For a quadratic form @) on a vector space V' over K,, we write Og(K,) for the
orthogonal group consisting all linear automorphs preserving (), that is,

Og(Ky) :=={g9 € GL(V) : Q(gv) = Q(v) for all v € V'}.
The special orthogonal group is defined by
O4(Ky) = {g € Oq(K,) : det(g) =1},

as a subgroup of Og(K,) with index 2. Let Bg be the bilinear form associated with
(). For a non-isotropic vector v, the reflection in the direction of v is the map
Bg(z,v)
Q) "
To state our main result on stability, we also define the p-adic sup-norm of vector
r=(z1,...,2,)" € (K,)" and matrix M = (m;;) € Mat, (K,) by

o(x) =2 —2 xeV. (1.1)

lzllp == max |zily, and [[Mll, := max |milp.

Theorem 1.1. Let A € K, be such that |\, € {1,q}, and define A = diag(1, ).
Then for any matriz S € OF(K,), there exist vectors a,& € (K,)? satisfying

(a) The p-adic sup-norms |||, = €], = 1.
(b) The matriz S can be decomposed into reflections S = 0,0¢.



CONSTRUCTIVE AND STABLE CARTAN-DIEUDONNE AND BINARY QUADRATIC FORMS 3

(¢c) For any u,v € (K,)? such that ||o — ull, < [4p,¢ 2% and ||§ — o[, <
|4]pq~>72||S]|; %, we have the bound

HS - Uuav”p <

1 €
5| I8lpg™ ™ maxg i = wlly, [l€ = wlly}- (1.2)

p

Notice that Equation expresses a precise stability property: if the reflecting
vectors «, & are perturbed slightly to nearby vectors w,v, then the corresponding
product of reflections 0,0, remains close to S = o,0¢, with the deviation bounded
explicitly in terms of the perturbation size.

We also remark that our proof yields stronger results than stated. In fact, we
obtain explicit formulas for the vectors o and £ appearing in the construction. As
these formulas require additional notation, we present here a simplified version of
our theorem and refer to Section [5| for complete details.

While our main theorem is formulated for diagonal quadratic forms, the results
extend naturally to general binary quadratic forms. By argument identical with

Lemma , any non-singular symmetric 2 X 2 matrix B over K, can be expressed as
B =kP'AP
for some k € K, P € GLy(K,), and A = diag(1, A). The conjugation relation
PTO}(K,)P = Of(K,)

then allows us to transfer our results from diagonal to general forms.

There has been considerable interest in obtaining effective versions of the Cartan—
Dieudonné theorem. Fukshansky [Fuk(7] showed that every isometry of a regular
bilinear space over a number field is a product of reflections defined by vectors of
bounded height. Over the fields of real and complex numbers, the problem of a
constructive decomposition has been studied in, for instance, [Uhl01, [AGARAOQG,
Fulll].

The technical difficulty over local fields is distinct. Over number fields, one can use
the product formula to study Q(v)o, instead of o, itself when estimating the height,
as in [Fuk07, Lem. 5.1]. Over local fields, however, the term @(v) remains in the
denominator, as Equation shows. Thus, we require a lower bound for |Q(v)] to
control ||o,||. In this paper, we obtain such bounds using explicit parametrizations
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for isometries of binary quadratic forms. This approach, unfortunately, presents
significant obstacles to generalization in higher dimensions.

Theorem has an interesting application. Conway and Sloane posed the follow-
ing question [CS99, Page. 402, Question (G4)]:

(G4) “If two quadratic forms are equivalent over Z, for every prime p
and also equivalent over R, find an explicit rational equivalence whose
denominator is prime to any given number.”

This problem is first resolved by Siegel using the Cayley transformation in [Sie41],
and [CGL21] clarified implicit steps in Siegel’s argument by exhibiting the effective
process of finding such equivalence. O’Meara in [O’M63, 101:7] gave an existential
proof, generalizing the result to arbitrary number fields and their completions based
on the weak approximation property on the special orthogonal group. Theorem
makes O’Meara’s approach effective, therefore we can extend the result of [CGL21]
to number fields, though only in dimension 2. The precise statement is given below,
continuing with the notation of Theorem [L.1]

Theorem 1.2. Let |- |y, ..., | - |p, be finitely many distinct non-Archimedean ab-
solute values on K. Let B,C € GLo(K) N Sym,(K) be symmetric matrices that
are equivalent over K wvia 19 € GLy(K), and also equivalent over Oy, ..., O, . Let
P € GLy(K) be the matriz obtained by Lemma[6.1 Let {b,...,b,} be a Z-basis of
O. Define constants

€ = Imin

K@Uml

4e;+4
T0 P eit

8 det(P)’),, }
po di

4
pi Pi

and

My = STH(by), s = [logypy(1/6)] +1

j=1
fori € {1,2,....s}. Then there exists integral vectors u,v € O? with bounded height
H(u), H(v) <M [T N(p:)",
i=1

such that the matriz ToPo,o,P~t € GLo(K N Oy,) fori € {1,2,...,s}, and B,C are
equivalent via ToPo,o, P~ L.
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The paper is organized as follows. In Section [2| we recall basic facts about abso-
lute values on number fields and establish notation. Section [3[ develops the theory of
automorphs for diagonal binary quadratic forms, with particular attention to their
decomposition into products of reflections. Section [4| proves an effective weak ap-
proximation result that allows us to construct global solutions with controlled height.
Section [5| formulates a constructive Cartan—Dieudonné decomposition, which consti-
tutes the main result of this paper. Finally, in Section [6] we present an application
of this result, giving an effective procedure for finding an equivalence between two
globally equivalent forms that are locally equivalent at a finite set of places.

2. PRELIMINARIES

We begin with some foundational materials. A classical result of Ostrowski states
that, up to equivalence, every non-trivial absolute value on @Q is either the real
absolute value or the p-adic absolute value of some prime p. Let K be a number field
with ring of integers 0. Absolute values on K extend those on QQ in two distinct
ways.

First, for each (real or complex) embedding o : K < C, we obtain an Archimedean
absolute value on K by setting |z|, = |o(x)|, where the right-hand-side denotes the
usual absolute value on C.

Second, fix a rational prime p. The ideal (p) C Z extends to an ideal in O, which
factors as

(p)O =] »f",
=1

where the p;’s are distinct prime ideal in O, and the e; are their ramification indices.
Each p; gives rise to a discrete valuation v,, : K* — Z defined as follows: for
= a/bwith a,b € O, set vy, (x) = vy, (a) — vy, (b), where v,, = n if a € p™\p"*™!, and
similarly for b. This valuation is well-defined because O is a Dedekind domain. The
corresponding non-Archimedean absolute value on K is given by

p*vpi(ﬂﬂ)fi7 if x # 0,

|z
0, if x =0,

P —

where f; = [O/p; : F,] is the inertia degree. This convention follows standard sources
(see, e.g., [Neu99, Chapter. II, §5]). When the choice of p; is clear from the context,
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we may write ¢ = p/i, so the formula simplifies to |x|, = ¢~*®). Another frequently
used immediate consequence is the ramification index e; is equal to v, (p).

Absolute values on K arise from one of the constructions above. We denote the
set of all absolute values on K by M(K). For v € M(K), write v|oo if v arises from
an embedding into C, and write v|p for some prime number p if v extends the p-adic
absolute value.

For certain classes of elements in K, square roots can be defined and distinguished
via binomial expansion. The following result ensures the validity of such a definition.

Proposition 2.1. Let K be a number field with ring of integers O, and let p C O
be a non-zero prime ideal dividing (p). Let e be the ramification index of p, and let

K, and O, be its completion and its valuation ring, respectively. Then:

(a) If p > 2, the series Y0, (1/2)x converges in K, for all x € p°O,.
(b) If p =2, the series converges for all x € p***1O,.

Moreover, the limit defines an element whose square is 1 + x; that is:

(£ -+

Proof. To show convergence,we estimate the terms |<17{L 2) 2", as n — oo. For sim-
plicity, we write p/i = ¢. When p|(p) for prime p > 2, we know

'(1/2) _ |1/2(1/2 — 1) (1/2=n+1)

n!
By Legendre’s formula,

1
n!

— qvp(nl)'

p p b

S A

i P
s0 vy(n!) = evy(n!) < en/(p—1). Since x € p (’)p, we have |z|, < 1/¢°. Hence,

lim ‘(1/2> z"
n—oo n

The case of p = 2 is slightly different. We know

'(1/2) _ ‘1/2(1/2 — 1) (1/2=n+1)

n!

en

< lim ¢gr-1"" = 0.

n—oo

p

11

S vp(n)) up(2)n
~ |nl2n T

p p p
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Legendre’s formula still gives vy(n!) = evy(n!) < en, and by e = v,(2) we have
](17/12%3 < ¢°"¢*" = ¢**". On the other hand, x € p>*™' O, implies |z|, < 1/¢**!, and

thus
lim '(1/ 2) z"
n—oo n

Therefore, the series converges in both cases.

IR T 2en—(2e—1)n __
= g =0

P

Finally, the square root relation is easily verified through Vandermonde’s convo-

((1+2)72)" = <§) (1722)%”) (,i (17/?)5””)
- g} (; <1I/f> <n1£2k>>xn = 2 (i)x" 14z

This justifies the following definition:

lution:

Definition 2.2. Let K, O, p, e, K,, and O, be as in Proposition . For all
z € p¢O, if p > 2, and all z € p**T O, if p = 2, we define the p-adic square root of
1+ x by the convergent power series

(1 +x);/2 = io <1T/L2>x”.

The following three general facts will be used in the proof of Theorem Lemma
.3 and Theorem [1.2]

Lemma 2.3. Let K be a field of characteristic 0 with a non-Archimedean absolute
value | - |,. For matrices M, N € Mat,(K,), the following two statements hold.

(@) IMNlp < [IMlp[|Nly-
(b) If M is invertible, then |[M ||, < [[M|;~"/| det(M)],.

Proof. Clear. U

Lemma 2.4. Let K be a number field with a non-Archimedean absolute value | - |,,
and let M lies in GLy(K,). If det(M) = £1, then |M||, > 1.
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M = (“ b) .
c d
Thus, we have |ad — be|, = |det(M)|, = | £ 1|, = 1. The ultrametric triangle
inequality of the p-adic absolute value then yields

Proof. To be explicit, write

1 = |ad — bel, < max{|aly|d],, [blplc]y} < ||M||§
That implies ||M]|, > 1, as we want. O

Lemma 2.5. Let K be a field of characteristic 0 with a non-Archimedean absolute

value |- |,. Let K, be the corresponding completion, and O, be its valuation ring. For
matrices M € GL,(K,) and N € GL,(O,). If ||M — N||, <1, then M € GL,(O,).

Proof. Since ||[M — N||, < 1, we have |m;; — n;j|, < 1 for all 1 < i,5 < n. Since
N € GL,(0,), we know |n;;|, < 1. Hence,

[mijlp = [nij + (mag — nig)lp < max{|ngly, |mi; —ngle} <1,

which implies m;; € O, for all 7, j.
It remains to show that |det(M)|, = 1. This follows from the fact that the
determinant function det : GL, (K,) — K, is continuous under the matrix p-adic

sup norm. To show this, we observe

> I0nioe — niow)

| det(M) — det(N)], =

€Sy =1 P
n n
< max M o(i) — Nioli < { max |m;; — n;; < 1.
= ped z_1_[1( 1,0(1) 1,0(1)) ; >~ 1§i,j§n| i mlp

Therefore, |det(M)|, = max{|det(N)|,, |det(M) — det(N)|,} = 1, implying that
M € GL,(0,). O

3. FOrRM OF AUTOMORPHS

In this section, we revisit the notion of orthogonal groups of a quadratic form
introduced in Section[I, now working in coordinates and representing quadratic forms
by symmetric matrices. This equivalent formulation allows us to write down explicit

formulas for reflections in dimension 2.
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Definition 3.1. Let K be a field of characteristic 0, and let A € GLy(K) be a
symmetric matrix. A matrix S € GLy(K) is called an A-automorph over K, denoted
S € O4(K),if S'AS = A, where S* denotes the transpose of S. The set of proper A-
automorphs over K, denoted O (K), consists of those S € O4(K) with det(S) = 1.

An important class of elements in O4(K)\O(K) is given by reflections with
respect to A. When the matrix A has a particularly simple form, the reflections can

be explicitly expressed as follows.

Definition 3.2. Let K be a field of characteristic 0. Define a matrix A = diag(1, \) €
GLy(K). For vector (m,n)" € (K*)?, define the matrix o, € GLo(K) by
1 (—m2 +An?  —2\mn )

O(mn)t =
(m,n)* —2mn m2 — \n?

m? + An?
We refer to oy, n) as the reflection (with respect to A) along the direction of the

vector (m,n)t.

It follows immediately from Definition that the reflection matrix o, ,): is in-
variant under multiplication: for all k € K™, we have 0, nyt = Op(m,n)t. Furthermore,
each reflection is involutive: of,, . = I for all non-zero vectors (m,n) € (K*)?.

The elements of O (K) can also be explicitly described.

Proposition 3.3. Let K be a field of characteristic 0. Define A = diag(1,\) €
GLy(K). Then any element in O (K) is of the form

g (a —c/\) ’
c  a

for some ¢ € K such that 1 —\c? is a square in K, and a € K satisfying a> = 1 —\c>.

Proof. Fix an arbitrary matrix S € Of(K), and write S = (a 2) Then the
c
condition S*AS = A yields the system:
a? + A\ =1, (3.1)
ab+ Aed =0, (3.2)

b+ d*) =\ (3.3)
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Treating ¢ as a parameter and solving the system, we find that Equation (3.1))
and hold only if a? = d®> = 1 — A¢® and b* = ¢2)\2. To satisfy Equation (3.2)),
we observe if @ = d then b = —c) and det(S) = 1; if a = —d then b = ¢\ and
det(S) = —1. Since we require S € O} (K), only the first case a = d is possible. [

4. EFFECTIVE WEAK APPROXIMATION

A central tool for proving our main result is an effective version of the weak ap-
proximation theorem. This result enables us to find an integral element in a number
field K that approximates prescribed values at finitely many non-Archimedean ab-
solute values, using only a finite search. The finiteness of searching is guaranteed
by two key notions that measure the “size” of elements in K: height and norm. We
introduce these concepts below.

For an element = € K, the height of = (with respect to K) is defined as

H(z) = m|ax\:c|v.

This notion naturally extends to vectors z = (1, ..., z,)" € K™ by H(z) = maxj<;<, H(x;).
The field norm of x, denoted N(x) = Ng/g(z), is given by
N(z)= [[ o(=).
o:K—=C

With a slight abuse of notation, for non-zero ideal a of @ we use N(a) = |O/qa] to
denote the norm of a.

Let K be a number field with degree d, with integral basis zq,...,24. Then K
has d embeddings, among which r; are real and 27, are complex. We enumerate
te embeddings as oy, ...,0.,, and 71, ..., To,,, Where 7; is the conjugate of 7,,,; for
i€{1,2,...,m}. We can embed K into R? by the Minkowski embedding

oK >R 2 (al(x), ey Oy (2), R (), ooy BTy (), ST (2),4 .0 %Trg(x)>.

Under this embedding, O becomes a full-rank lattice (i.e. a discrete, finitely gener-
ated abelian group) in R? with Z-basis {o(z1), ..., 0(x4)}. Any non-zero ideal a C Ok
is likewise embedded as a full-rank sublattice of o(Ok), with index [0(Ok) : o(a)] =
N(a). We now introduce a standard tool for producing bases of such sublattices.

Definition 4.1. A square matrix H € Mat, y,(Z) with det(H) # 0 is in Hermite

normal form if;
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(1) The matrix H is upper triangular.
(2) The diagonal entries h;; > 0 for all i € {1, ...,d}.
(3) The off diagonal entries satisfy 0 < h;; < h;; for all j # 1.

Lemma 4.2. Let ' C A C R? be full-rank lattices. For every column vector basis
matriz B € GL4(R) of A, there ezists a basis matriz B of A" such that B’ = BH,
where H is a matriz in Hermite normal form.

Proof. Let B be a basis matrix of A, and By be any basis matrix of A’. Since A’ is a
sublattice of A, every element in A’ is a Z-linear combination of the column vectors
of B. Therefore, we can write By = BV for some integral matrix V' with full rank.
Basic matrix theory gives the fact that every rational matrix with full rank can be
transformed into Hermite normal form by a finite sequence of elementary column
operations. Due to unimodularity of those operations, there exists a unimodular
matrix U such that H := VU is in Hermite normal form. It suffices to show that
BH = BVU = ByU is also a basis matrix of A’. To prove this claim, we observe that
for vectors y = BoUx where x € R?, z is integral if and only if Ux is integral. But z
is integral means y is in the lattice generated by BoU, and Ux is integral means y is
in the lattice generated by By. That implies By and BoU generates the same lattice,
completing the proof. 0

Lemma helps us to prove the next result, which can be seen as an effective
version of the Weak Approximation Theorem. A version of this result was first
established in [CGL21, Lem. 2.3] for Q and its completions Q,. Here we adapt their
method to general number fields, thereby obtaining the following generalization.

Lemma 4.3. Let K be a number field of degree r, and let O be its ring of integers.
Take {by,...,b.} be a Z-basis of O. Define py,...,ps to be non-zero prime ideals of
O, each corresponding to a non-Archimedean absolute value | - |,, on K. Fiz a real
number 0 < € < 1, and suppose that for each p;, a number x; € O,, is given. Then
there exists z € O such that for each 1 <i < s,

|z — iy, <€, and 0 <H(z) <rMg[[Np)",
i=1
where

1 T
i=1
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Proof. Since O is dense in O,,, for each ¢ we may find z; € O such that |z; — z,, < €.
Define an ideal a of O by a =[]}, pf By the Chinese Remainder Theorem, there
exists a coset zg + a of a such that for all 2’ € z5 + a, we have

2 =z mod p’ for all i.

This implies |2/ — z;|,, < N(p;)™% < ¢, and so

|2" — xip, < max{|z’ — 2

2 — Tilp, } <€,

pio
as we want.

Next, the goal is to find one element in the coset zy+a with bounded height. To do
this, we embed K into R" by the Minkowski embedding 0. Let B = [0(b;) o(bs) ... o(b,)]
be the basis matrix of the full-rank lattice ¢(O). By Lemma there exists a ba-
sis B' of o(a) such that B’ = BH, where H = (h;;) is in Hermite normal form.
Because det(B) = vol(R"/o(O)) and det(B’) = vol(R" /o (a)) = N(a)vol(R"/a(O)),
we conclude det(H) = N(a). Since H is an integral upper triangular matrix, we
have |hy;| < det(H) for 1 < i < r. Since off-diagonal entries in matrices of Hermite
normal form are strictly less than their diagonal entries, we further conclude that
|hij| < det(H) for all 1 <4,7 <r. Thus, if we write {0, ...,0.} as the integral basis
of a generated by B’, we can bound the height of the b}’s by

M) = H( St ) < 30 < 3 ulH0,) < MicN )
j=1 j=1 j=1
Since every coset of a must have one of its representative be mapped by o into the

region
A= {Zaia(bg) :0<a;<1fori= 1,...,7"}7
i=1
there exists z € 2y + a such that o(z) € A. Thus
H(z) <> H(¥) < rMgN(a),

i=1
as we want. U

It is worth noting that the bound H(z) < rMg [Ti_, N(p;)% is indeed an effective
search bound for z € O. That is, there are only finitely many elements in O whose

height is bounded above by a fixed finite constant. This assertion is formalized in
the following proposition.
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Proposition 4.4. Let K be a number field with ring of integers O. Let m be a pos-
itive real number. Then the set {x € O : H(x) < m} is finite and can be determined
effectively.

This proposition is a special case of Northcott’s Theorem (see, e.g., [Zan09, Thm. 3.7]),
which asserts that the set of algebraic numbers of bounded degree and bounded log-
arithmic Weil height is finite. In our case, since the elements of O are algebraic
integers of fixed degree, it suffices to note that for any x € O, the logarithmic Weil
height h(x) satisfies

h(z) <logH(z),

where H(z) is the Archimedean height defined above. Therefore, the finiteness of the
set {x € O : H(z) < m} follows immediately from Northcott’s Theorem. For the
effectiveness of Northcott’s Theorem, see, for example, [Ser97, Chapter. 2, § 5].

5. PROOF FO THEOREM [1.1]

To prove Theorem [1.1] we will first establish three preparatory lemmas. The
proposition will then follow as a consequence.

Lemma 5.1. Let A\, d € K, be such that |d|, = 1/¢°"" and |\, € {1,q}. Define
A = diag(1,\), and let a,c € K, satisfy a®> + \c¢* = 1. Consider the matriz

S = (“ _CA) € O%(K,).

Cc a

Then:

(a) The element 1—\d? is a square element in K,, and its square root (1—\d?)'/2
is well-defined.
(b) Define vectors 3,n € (K,)? as

5 — —14+ (1= Xa»)'? _[—1+a(l =XV + Aed
N d T da— a2 )

Then S can be written as the product of two reflections: S = ogo,,.

Proof.
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(a) Since |d], = 1/¢°™ and |A|, < g, we have |\d?|, < 1/¢**!, so \d* € p>*T O,
By Definition the binomial series for (1 — Ad?)'/? converges in K,, which
confirms that 1 — \d? is indeed a square in K.

(b) Using the general formula for reflections from Definition the reflection
matrices are computed as:

o (1 — \d?)'/? d\ a1 =Ad)V? + Xed  Ada — Ae(1 — Ad?)'/?
o d —(1=xa)2) T Vda—e(1 = A®)Y? —a(l — A®)Y? + Aed )

A direct matrix multiplication verifies S = o30,.
O

Lemma 5.2. Let A € K, satisfy |\, = q, and let a,c € K, be such that a® +\c* = 1.

Define the matriz
g (a —c/\) ‘
c a

Then for any d € K,, any & € {kn : k € Ky, |kn|l, = 1}, where n € (K,)* was
defined in Lemma[5.1] (b), and any v € (Ky)* with ||§ — 7|, < 1, we have

log = o5 ls < 2| 1STa™ ™ llE = i

1
8

p

Proof. For the sake of clarity, we write & = (&1,&)" = k(n,m2)" and v = (71,72)".
For any matrix M denote by M(i,j) its (4, j)-entry. The condition || — |, < 1
gives us ||v]l, = |l€|l, = 1, because

L= [lglly = [lv + (€ = llp < max{{lyllp, [1€ = vllp}

implies |||, > 1, and

7l = 1€+ (v = Oy < max{[[€]ly, Iy = &llpy =1

implies ||y, < 1.
Since we equip the matrices with sup-norm, we estimate ||o¢ — 0|, by computing
each entry’s p-absolute value. Using the general formula for reflections in Definition

3.2, we have

2M (&1 + &172) (Som1 — €172)
(& + A3 (i +M3)

oe(1,1) —oy(1,1) =
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Because €]l = ||7|l, = 1, the numerator satisfies |{271+&172], < max{|&a71lp, [§172]p} <
1, and [&71=&172lp = [L(n1 —&) +& (& —2)|p < max{|&lfp, [&lpHIE = < (€=,
Hence we know
2A[p 1€ = o

167+ Al + M3l

To bound this expression, we seek a lower bound for the denominator. Because
Ay = ¢, we know v,(£7) and v,(\&3) differ in parity. Thus |€2|, # |A&3]p, implying
&8 + A&y = max{|&Z]p, |\3l,} > 1. Similar argument shows |77 + Myal, > 1.
Therefore, we obtain |o¢(1,1) — o4 (1, 1)], < q|2],[|€ — llp-

We have identical bound for the (2, 1)-entry:

_ _ 2026 — 11&) (G — M)
e D= @l G+ +33) |,

Moreover, from the general formula of reflection in Definition 3.2} we observe o¢(1,2)—
0,(1,2) = A0¢(2,1) — 0,(2,1)) and 0¢(2,2) — 0,(2,2) = —(0¢(1,1) — 0,(1,1)). So
we finally conclude

loe = oy lly = loe(1,2) = 05 (1, 2)lp < 12016 = V1.

|o6(1,1) = 0(1, D]y <

< q12p11€ = 7llp-

O

Lemma 5.3. Let A\ € K, satisfy |\, = 1. Let a,c € K, and S € GLy(K,) be
as in Lemma [5.4 Then there exists d € K, with |d|, = 1/¢**', such that for any
¢ € {kn: k€ Ky, ||kn|l, = 1} where n € (K,)?* was defined in Lemma[5.1] (b), and
any v € (I,)* with [|§ = lly < |[4pg*72(|S]7%, we have

1S 1I5a™ 1€ = ~1lp-

1
loe = a5lls < |5
8

P
Proof. By lemma [2.4] det(S) = 1 implies ||S||, > 1. Thus the norm of { — v can be
bounded by
1€ = Allp < [4lpg*7|IS]I;* < 1.
By similar argument in Lemma we still have ||y, = ||€]l, = 1.
Continuing the notation from the proof of Lemma [5.2, we write { = (&,&)" =

k(ni,me)t and v = (71,72)". We also let M (4, j) denote the (i, j)-entry of the matrix
M. As before, we bound the sup-norm of o¢ — 0., by formulating upper bounds for
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each entry one by one. Using the general formula for reflections in Definition (3.2 we
have

2A(&m + §172)(Eem1 — &172) 216116 — [l

oeh D =L Db =@ @i + 8 |, S 16+ A&l + Ml
Thus, we seek a lower bound for the denominator. Using formula of 7 in Lemma [5.1
and the fact & = kn, a direct computation shows &7 + A3 = —2k&; = —2k?n;. So we
will bound |¢§ + A\é3|, by obtaining lower bounds for |k|, and |n;], separately.

To bound |k|,, we first claim that ||n[], < [|S||,. This follows by showing that each

of the five terms appearing in 7; and 7, has p-adic absolute value no greater than

some entry of S. The term | — 1|, < [|S||, because
1 = |a® + Acly < max{|a®|y, [Ac®[,},

implying that either |al, > 1 or [Ac|, > 1. The term |a(1 — Ad?)'/?|, = |al,, because
|d|, = 1/¢°** implies |(1—Ad?)"/2|, = 1. The term |Acd), is less than | —cAl,, |dal, less
than |al,, and |e(1 — Ad?)'/?|, no greater than |c|,. So indeed we have |7, < [|5]|,-
Together with our assumption [|kn||, = 1, we deduce ||kS||, > 1, so the bound of |k,

is
1

b= i,

Now the main task falls on analyzing |n|,. Write |c|, = ¢™ for m € Z. As long as
m # —e — 1, d can be any element with absolute value |d|, = 1/¢°**. Therefore we
may fix a uniformizer 7 of K, and take d = 7. In the case of m = —e — 1, d will
either be ¢ or —c¢, and the sign will be chosen later. We now determine the values of

||, by performing a case analysis on the possible values of m.
When m > 0, then |a|, = ¢™ and |(1 — Ad?)/2|, = 1. Therefore,

Imle = | — 14+ a(l — Ad*)'? + \ed|, = max{1,¢™, ¢" '} = ¢™.

When m = —e—1, we know |A\c?|, = 1/¢**™ is small enough to define the binomial
expansion for (1 — Ac?)/2 by the requirement of Definition [2.2} If a = (1 — Ac?)/2
we set d = —c, and |, = | — 2Ad?|, = |2|,¢7%72; when a = —(1 — Ac?)Y/? we set
d=c,and ||, = | — 2+ 2Xd?|, = |2],.

When —e < m < 0, the binomial expansion cannot be applied on a. However, if
we set g = —1+ Aed and h = a(1 — A\d?)'/?, we immediately observe (g +h)(g—h) =
Me —d)? # 0. Since ||, = ¢™ > ¢ ¢! = |d|,, we know |c¢ —d|, = |¢|, = ¢™. Since
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(1= Ad?)!2|, =1 and |a], = \/max{[1[,.| — A|,} < 1, g— h can also be bounded
by

|9 = hly < max{[ — 1y, [Acd]y, la(1 — )\dz)l/2|p} =1
Thus we can estimate the norm of 17, = g + h by

[A(c —d)?], g
mly = lg +hly, = = >
’ P g—=nhly g -l

2m

When m < —e—1, we use binomial expansion on both (1—Ad?)"/? and (1—\c?)'/2.
In the binomial series, lower-order terms has strictly larger p-adic absolute values
than the higher-order terms. Hence, by the ultrametric triangle inequality we can
ignore all higher-order terms when evaluating |n;],. If a = (1 — Ac?)!/2, then we have

|— 14 a(l — Ad2)2), = ’ ey (%f)(—ﬁ)n 3 <1£2> (=Ad?)"

n=0 n=0 p

== 1/20d = /22, = [1/20d%), = [1/20pg 2.

If a = —(1 — Ac?)'/2, then
| —1+a(l—=Ad®)Y?, = | =2+ 1/2Xd® + 1/2)\3|, = |2], > ¢ °
In either case we have
| —1+a(l— A2, > ¢ > |\cd)p.
Hence we know
il = | = 1+ a(l = Ad®)"”? + Aedly > max{|1/20yq~>2, [redly} = [1/2],q7>~2,

To sum up, we have

q" m > 0,

q2m —€ é m S 07
|771|p > 99

12|54 m=—e—1,

11/2lpg %2 m< —e—1.
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Therefore, we finally obtain

12, /11SI7, m > 0,
20,*™ /IS5, —e<m <0,
€423, = | - 2Py > 4 P TP
4pq> /ISR, m=—e—1,
g2/ S, m < —e— 1.
A uniform bound is therefore
|§2+)\§2‘ > ‘4’pq_26_2
' 2P s)

To obtain a lower bound for |vi + \y3|,, we observe

92+ 2l = |6+ (n =€) + A (e + (2 — &),
= [(EF+2) + (n — &) + A2 — &)* + 26 (1 — &) + 226 (2 — &),

Because of [|§ — 7|, < [4],¢7>*7?||S];%, all correction terms have norm strictly less

than the leading term &7 + A\é2. So

[4]pg~> "

i+ )‘72‘11 &7 + )‘Sz‘p = 8z
15113

Therefore, we can finally estimate

20 (&7 + &172) (o1 — &12) < 1€ — 7l
(& + A3 (i +M3) 8o 1S5 g1~

|05<17 1) - O-W(lv 1)|P =

and

2(72& — &) (S — A&ee) < 1€ =l

(&7 + A& (F + M3) 8l ISl g1t
From the general formula of reflection in Definition [3.2] we observe 0¢(1,2)—0,(1,2) =
Moe(2,1) —0,(2,1)) and 0¢(2,2) — 0,(2,2) = —(0¢(1,1) — 04(1,1)). So the (1,2)
and (2, 2)-entry yields the same bound for |o¢ — o,||p, and we can finally conclude

|U§(27 1) - 0-’Y<2’ 1>|P =

log = a5 lls < 2] 1SHpa* 1€ — -

P
U

With the preceding lemmas established, we are now in a position to complete the
proof of one of our main results, Theorem [1.1]
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Proof of Theorem[1.1] Let |\, € {1,q}, and S € Of(K,) be arbitrary. By Proposi-
tion[3.3] S has the form described in Lemmal5.1 Applying Lemma/[5.1] we may write
S = 0,0¢, where the vectors o and & has been normalized so that ||«||, = [|£]|, = 1.

Now, let u, v € (K,)? satisfy [la—ull, < [4],¢7> 2 and [|§ —v]l, <[4, >[5, >
The bound in the case |\, = ¢, as given by Lemma , is weaker than the bound
for |A|, = 1 provided by Lemma Therefore, we consistently use the bound from
Lemma to ensure correctness. Specifically, Lemma yields

1
ot =l <[5 I50a*=1e ~ ol
p

and by choosing a = 1 and ¢ = 0, it also implies

loa = aully < || ¢ lle = ully-

p

Therefore,
15 = 0uoully = lloaloe — 0v) + (00 — 0u)oe = (00 — 0u) (0 — 00) ]|,
1 1
Smax{\g 151180 ollllé = vl |5 ¢ locllla = el
p p
1 S 4 8e+8
Mpﬂmq lloe = ullpl|€ = vllp ¢-

Next, we know o = 0, because scalar multiplication does not change the expression
of reflection matrix. Thus by the formula of og in Part (b) of Lemma[5.1] we have
2\1/2 L1
[oally = max{(1 — Ad")/",d,dA\} =max {1, — — =1
q° q°
Together with our assumption of |la — ull, < [4],¢ 2% < 1 and the fact |1/8], <

> < ¢****, they imply that the third term in the maximum above is strictly smaller
than the first:

1 . 1 .
| ISI5a* Pl = ullpli€ = vl < || ISTpa™ o — ullpli€ = vll,
64|, 8],
1 €
< |3| 1815a* lloallsl€ = vlls-
p
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Finally, since reflection matrices are involutive (o, = o,1), Lemma [2.3fmplies
loelly = lloaSlly < lloalllSlle = 1151,

Combining all the bounds, we arrive at

1

IS — ouowllp Smax{ S

1 €
3 q' +4IIUgIIpIIOé—UII,a}

I1Spa** Hloallsll€ = vl
p p

< ] 916 max{lla — ul, € — vl }

1
8)3

6. PROOF OF THEOREM [1.2]

From Theorem [1.1], we can derive a effective weak approximation for elements of
O} (K), aided by the following lemma.

Lemma 6.1. Let K be a number field, with B € GLy(K) a symmetric matriz. Let
P1,...,ps be non-zero prime ideals of O, each with uniformizer |m;|,, = 1/q;. Then

there exists a matriz P € GLo(K) and scalar k € K such that
kP'BP = diag(1,\) := A,

where [Ny, € {1,q} for all1 <i<s.

Proof. Since every nonsingular symmetric bilinear form over a field of characteristic
# 2 is diagonalizable, we may assume that B is diagonal, and write B = diag (1, 112).
By the weak approximation theorem, for each 1 < i < s there exists #; € K such
that |0; — milp, < 1/q; and |0; — 1|,, < 1 for all j # i. Therefore, 0; serves as a

uniformizer for p;, while taking trivial absolute value at all other primes p;. Define

E=ut, k= H@;[vp"(w)m, and P = diag(1, k).
i=1

Then these choices satisfy the required condition. O

The weak approximation result can now be formulated as follows.

Proposition 6.2. Let K be a number field of degree r, and let B € GlLo(K) be
any symmetric matrixz. Let py,....ps be non-zero prime ideals of O, with ramification
p; = 1/q;. Let P € GLy(K) be the matriz

indices e; and uniformizers m; satisfying |m;
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obtained from Lemma . Pick T; € Of(K,,) fori € {1,2,...,s}. Then, for any real
number

. —2e;—2 -1 —2
€< 1%-128{|4|qu‘ “lp TiP”Pi g

there exists a proper B-automorph

T e {PUUUUP1 0 < H(u),H(v) < rMKﬁN(pi)ei} C O4(K),

=1

where My and {; are constants defined in Lemma[{.5, such that

1Pl
I

8 det(P)?[p,

4 4de;+4
piQi !

T —T;

Pz‘<

foralll <i<s.

Proof. For i € {1,2,..., s}, we define S; = P7'T;P € O} (K,,). By Lemma there
exists a scalar £ € K such that

kP'BP = diag(1,\) := A,

which implies that all the S;’s are proper A-automorphs. Hence, by Theorem [1.1]
we can decompose each S; as S; = 0,,0¢,, where ||a;|lp, = ||&l]lp, = 1. By Lemma
4.3, we can find u,v € O? such that ||a; — ully,, [|& — vy, < € and 0 < H(u),H(v) <
rMy T3, N(p;)%. Apply Theorem [1.1|again, we obtain

||PUUUUP_1 - TLHPz < ||P||Pi||P_1||Pi||UUUU - S%H)Jz

_ 1 _ .

<Pl P~ lo 5| 1P TPl 0i e

Pi

1 .

< IPIG 1P 3] 1Tt

Pi

||P||;ZO || (14 {lei+4€
= [8det(P)R[p, R
Taking T = Po,0,P~!, the proof is completed. 0]

The preparatory result obtained above now allow us to establish our second main
theorem, Theorem [I.2]
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Proof of Therorem[1.3. Since B and C' are equivalent over O,,, there exists 7; €
GL»(O,,) such that B = 7/Cr; for i € {1,2,...,s}. Although the 7;’s cannot be
written explicitly, their norm must be ||7||,, = 1, as they are invertible, and all of
their entries are in the valuation ring O,,. We also know 75 '7; € Op(K,,). Write
them as T;. If any 7T; is not proper, then by [O’M63, 91:4], we can redefine T; = T; R;
for some R; € Op(K,,)\O%(K,,) with ||R;|l,, = 1. Hence, we may assume T; €
Of(K,,) for all i € {1,2,...,s}.
By Lemma 2.3 the norm of T} can be bounded above by

I

By Lemma [6.1, we can explicitly construct ¥ € K and P € GLy(K) such that

kP'BP = diag(1,\) := A. By Proposition, there exists a matrix ' = Po,0,P71 €

O} (K) and a constant €y > 0 such that, for each i € {1,2, ..., s} and every 0 < € < ¢,
< HP HTH4 qflei+4e < ”T(;l ;ll P ;?q?e,-+4

P8 det(P), T T [8det(P)7),,

Now choose € sufficiently small so that

e T ’lTl;lTi pi < "T(;l pill Tillps = "T(;l pi*

10
Pi

|Poyo, Pt —T;

1

<
Pi HTO

|Poyo,P~t — T )
Pi

This implies ||7oPouo, P~ — 1Ti||p; < 1, where 70T; = 7; € GL2(O,,) by definition.
Therefore, by Lemma 2.5, we conclude that 7oPo,0,P~! € GLy(K) N GLy(O,,) for
i€{l,2,.., s}, as desired. O
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